A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Precise Characterization of Genetic Interactions in Cancer via Molecular Network Refining Processes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genetic interactions (GIs), such as the synthetic lethal interaction, are promising therapeutic targets in precision medicine. However, despite extensive efforts to characterize GIs by large-scale perturbation screening, considerable false positives have been reported in multiple studies. We propose a new computational approach for improved precision in GI identification by applying constraints that consider actual biological phenomena. In this study, GIs were characterized by assessing mutation, loss of function, and expression profiles in the DEPMAP database. The expression profiles were used to exclude loss-of-function data for nonexpressed genes in GI characterization. More importantly, the characterized GIs were refined based on Kyoto Encyclopedia of Genes and Genomes (KEGG) or protein-protein interaction (PPI) networks, under the assumption that genes genetically interacting with a certain mutated gene are adjacent in the networks. As a result, the initial GIs characterized with CRISPR and RNAi screenings were refined to 65 and 23 GIs based on KEGG networks and to 183 and 142 GIs based on PPI networks. The evaluation of refined GIs showed improved precision with respect to known synthetic lethal interactions. The refining process also yielded a synthetic partner network (SPN) for each mutated gene, which provides insight into therapeutic strategies for the mutated genes; specifically, exploring the SPN of mutated revealed as a potential target for treating -mutated cancer, as validated by previous research. We expect that this work will advance cancer therapeutic research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540220PMC
http://dx.doi.org/10.3390/ijms222011114DOI Listing

Publication Analysis

Top Keywords

genetic interactions
8
gis
8
synthetic lethal
8
improved precision
8
gis characterized
8
expression profiles
8
ppi networks
8
mutated gene
8
refined gis
8
gis based
8

Similar Publications