Loss of the R2R3 MYB Transcription Factor RsMYB1 Shapes Anthocyanin Biosynthesis and Accumulation in .

Int J Mol Sci

Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Korea.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The red or purple color of radish ( L.) taproots is due to anthocyanins, which have nutritional and aesthetic value, as well as antioxidant properties. Moreover, the varied patterns and levels of anthocyanin accumulation in radish roots make them an interesting system for studying the transcriptional regulation of anthocyanin biosynthesis. The R2R3 MYB transcription factor RsMYB1 is a key positive regulator of anthocyanin biosynthesis in radish. Here, we isolated an allele of , named , in radish cultivars with white taproots. The allele carried a 4 bp insertion in the first exon causing a frame-shift mutation of RsMYB1, generating a truncated protein with only a partial R2 domain at the N-terminus. Unlike RsMYB1, RsMYB1 was localized to the nucleus and the cytoplasm and failed to interact with their cognate partner RsTT8. Transient expression of genomic or cDNA sequences for in radish cotyledons failed to induce anthocyanin accumulation, but that for activated it. Additionally, showed the lost ability to induce pigment accumulation and to enhance the transcript level of anthocyanin biosynthetic genes, while promoted both processes when co-expressed with in tobacco leaves. As the result of the transient assay, co-expressing and , but not , also enhanced the promoter activity of and . We designed a molecular marker for genotyping, and revealed that the allele is common in white radish cultivars, underscoring the importance of variation at the RsMYB1 locus in anthocyanin biosynthesis in the radish taproot. Together, these results indicate that the nonsense mutation of RsMYB1 generated the truncated protein, RsMYB1, that had the loss of ability to regulate anthocyanin biosynthesis. Our findings highlight that the frame shift mutation of RsMYB1 plays a key role in anthocyanin biosynthesis in the radish taproot.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8535906PMC
http://dx.doi.org/10.3390/ijms222010927DOI Listing

Publication Analysis

Top Keywords

anthocyanin biosynthesis
24
biosynthesis radish
12
mutation rsmyb1
12
rsmyb1
9
anthocyanin
9
r2r3 myb
8
myb transcription
8
transcription factor
8
factor rsmyb1
8
radish
8

Similar Publications

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Storage stability of an antioxidant tea prepared from purple corn (Zea mays L.) cob and stevia (Stevia rebaudiana Bert.) and its effects on biomarkers of oxidative stress in healthy humans.

Food Res Int

November 2025

Innovative Technology, Food and Health Research Group, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima, Peru; Innovative Technology, Food and Health Research Group, Instituto de Investigación de Bioquímica y Biología Molecular, Unive

Tea is consumed worldwide, and it is highly appreciated by consumers as a functional, healthy, and natural drink. The objectives of this research were to evaluate (1) the storage stability and (2) the consumption effect on biomarkers of oxidative stress of an antioxidant tea prepared from purple corn cob and stevia (AOxTea). The AOxTea bags were subjected to storage environments of 75 or 85 % of relative humidity at 30, 40 and 50 °C for up to 19 days.

View Article and Find Full Text PDF

Cyclodextrin-metal-organic framework for encapsulating anthocyanins with the enhanced stability and antioxidant property in Caenorhabditis elegans.

Food Res Int

November 2025

State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Rese

Anthocyanins (AC) are natural bioactive substances with the excellent antioxidant properties, but its structure is susceptible to the external environmental factors with inevitably decreased bioavailability. In this work, γ-cyclodextrin based metal-organic framework (CD-MOF) shows high encapsulation efficiency (96.09 %) and satisfiable loading amount (24.

View Article and Find Full Text PDF

Fruit drop, cracking, and advanced ripening prior to fruit harvest can promote significant losses in important apple cultivars such as 'Ambrosia' and 'Fuji' grown in the mid-Atlantic. These losses result from environmental factors, delays in harvest due to the lack of red skin color development, and cultivar-specific characteristics, among others. Aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) are ethylene-inhibiting plant growth regulators (PGRs) that can alter preharvest fruit drop, cracking, maturity, and quality by impeding ethylene biosynthesis and perception, respectively.

View Article and Find Full Text PDF

, commonly known as sweet potato, is an increasingly valued functional food because of its vivid coloration and rich bioactive compounds, especially anthocyanins and carotenoids, such as ipomoeaxanthin. This review focuses on the bioavailability, mechanisms of action, and therapeutic potential of sweet potato-derived anthocyanins in diabetes and metabolic disorders. Anthocyanins, which are plant pigments, exhibit high antioxidant activity by scavenging free radicals and stimulating endogenous antioxidant enzymes such as catalase and superoxide dismutase, thereby protecting cellular structures from damage and reducing oxidative damage in vital metabolic organs such as the pancreas, liver, brain, and muscles.

View Article and Find Full Text PDF