Formal proof of the requirement of MESP1 and MESP2 in mesoderm specification and their transcriptional control via specific enhancers in mice.

Development

Mammalian Development Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MESP1 and MESP2 are transcriptional factors involved in mesoderm specification, somite boundary formation and somite polarity regulation. However, Mesp quadruple mutant zebrafish displayed only abnormal somite polarity without mesoderm specification defects. In order to re-evaluate Mesp1/Mesp2 mutants in mice, Mesp1 and Mesp2 single knockouts (KOs), and a Mesp1/Mesp2 double KO were established using genome-editing techniques without introducing selection markers commonly used before. The Mesp1/Mesp2 double KO embryos exhibited markedly severe mesoderm formation defects that were similar to the previously reported Mesp1/Mesp2 double KO embryos, indicating species differences in the function of MESP family proteins. However, the Mesp1 KO did not display any phenotype, including heart formation defects, which have been reported previously. We noted upregulation of Mesp2 in the Mesp1 KO embryos, suggesting that MESP2 rescues the loss of MESP1 in mesoderm specification. We also found that Mesp1 and Mesp2 expression in the early mesoderm is regulated by the cooperation of two independent enhancers containing T-box- and TCF/Lef-binding sites. Deletion of both enhancers caused the downregulation of both genes, resulting in heart formation defects. This study suggests dose-dependent roles of MESP1 and MESP2 in early mesoderm formation.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.194613DOI Listing

Publication Analysis

Top Keywords

mesp1 mesp2
20
mesoderm specification
16
mesp1/mesp2 double
12
formation defects
12
mesp1
8
mice mesp1
8
somite polarity
8
double embryos
8
mesoderm formation
8
defects reported
8

Similar Publications

Organisms are inherently equipped with buffering systems against genetic perturbations. Genetic compensation, the compensatory response by upregulating another gene or genes, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways.

View Article and Find Full Text PDF

MESP1 and MESP2 are transcriptional factors involved in mesoderm specification, somite boundary formation and somite polarity regulation. However, Mesp quadruple mutant zebrafish displayed only abnormal somite polarity without mesoderm specification defects. In order to re-evaluate Mesp1/Mesp2 mutants in mice, Mesp1 and Mesp2 single knockouts (KOs), and a Mesp1/Mesp2 double KO were established using genome-editing techniques without introducing selection markers commonly used before.

View Article and Find Full Text PDF

Supt20 is required for development of the axial skeleton.

Dev Biol

January 2017

Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA. Electronic address:

Somitogenesis and subsequent axial skeletal development is regulated by the interaction of pathways that determine the periodicity of somite formation, rostrocaudal somite polarity and segment identity. Here we use a hypomorphic mutant mouse line to demonstrate that Supt20 (Suppressor of Ty20) is required for development of the axial skeleton. Supt20 hypomorphs display fusions of the ribs and vertebrae at lower thoracic levels along with anterior homeotic transformation of L1 to T14.

View Article and Find Full Text PDF

Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration.

J Cell Biol

May 2016

Université Libre de Bruxelles, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Brussels B-1070, Belgium WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium

During embryonic development, Mesp1 marks the earliest cardiovascular progenitors (CPs) and promotes their specification, epithelial-mesenchymal transition (EMT), and cardiovascular differentiation. However, Mesp1 deletion in mice does not impair initial CP specification and early cardiac differentiation but induces cardiac malformations thought to arise from a defect of CP migration. Using inducible gain-of-function experiments during embryonic stem cell differentiation, we found that Mesp2, its closest homolog, was as efficient as Mesp1 at promoting CP specification, EMT, and cardiovascular differentiation.

View Article and Find Full Text PDF

How Mesp1 makes a move.

J Cell Biol

May 2016

Aix-Marseille University, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille UMR 7288, 13288 Marseille, France

The transcription factors Mesp1 and Mesp2 have essential roles in the migration and specification of multipotent progenitor cells at the onset of cardiogenesis. Chiapparo et al. (2016.

View Article and Find Full Text PDF