Steering Metal-Organic Network Structures through Conformations and Configurations on Surfaces.

ACS Nano

Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technol

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular adsorption conformations and arrangement configurations on surfaces are important structural aspects of surface stereochemistry, but their roles in steering the structures of metal-organic networks (MONs) remain vague and unexplored. In this study, we constructed MONs by the coordination self-assembly of isocyanides on Cu(111) and Ag(111) surfaces and demonstrated that the MON structures can be steered by surface stereochemistry, including the adsorption conformations of the isocyanide molecules and the arrangement configurations of the coordination nodes and subunits. The coordination self-assembly of 1,4-phenylene diisocyanobenzene afforded a honeycomb MON consisting of 3-fold (isocyano)-Cu motifs on a Cu(111) surface. In contrast, geometrically different chevron-shaped 1,3-phenylene diisocyanobenzene (-DICB) failed to generate a MON, which is ascribable to its standing conformation on the Cu(111) surface. However, -DICB was adsorbed in a flat conformation on a Ag(111) surface, which has a larger lattice constant than a Cu(111) surface, and smoothly underwent coordination self-assembly to form a MON consisting of (isocyano)-Ag motifs. Interestingly, only C-Ag nodes with heterotactic configurations could grow into larger subunits; those subunits with heterotactic configurations further grew into Sierpiński triangle fractals (up to fourth order), while subunits with homotactic configurations afforded a triangular MON.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c06615DOI Listing

Publication Analysis

Top Keywords

coordination self-assembly
12
cu111 surface
12
configurations surfaces
8
adsorption conformations
8
arrangement configurations
8
surface stereochemistry
8
mon consisting
8
heterotactic configurations
8
configurations
6
surface
6

Similar Publications

The targeted formation of low-symmetry coordination cages represents a significant design challenge but offers the potential to engineer bespoke molecular hosts with precision. In this work, we have combined the design principles of geometric complementarity and coordination sphere engineering to direct the site- and orientation-selective self-assembly of heteroleptic PdL L -type coordination cages from low-symmetry ligands. The effects of different combinations of heterocyclic donors and their locations within the cage structures on isomer distributions were studied, providing insights on shifts in the balance between non-covalent interactions in the first and second coordination spheres of the cages.

View Article and Find Full Text PDF

The exclusive formation of artificial multicomponent assemblies remains a significant challenge, in contrast to the well-established organization observed in natural systems, due to intrinsic entropic constraints. To overcome this limitation, recent efforts have been focused on developing precision self-assembly strategies for the rational construction of such architectures. Here, we construct an ideal complementary pair of 2,2':6',2″-terpyridine (tpy)-based ligands by fine-tuning the substituent bulkiness, which enables the quantitative formation of robust nested cages through efficient dynamic heteroleptic complexation with multivalent coordination.

View Article and Find Full Text PDF

Electrocatalytic water oxidation with bioinspired cubane-type Co complexes.

Dalton Trans

September 2025

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Interior, CU, Ciudad de México, 04510, Mexico.

Synthesis, characterization, and electrocatalytic water oxidation studies of the cubane-type complexes [(μ-)CoCl(MeOH)] (1) and [(μ-)CoCl(MeOH)] (2) are herein reported. Cubanes 1 and 2 were obtained in high yields under mild conditions by self-assembly of the ligands = 1--2-benzimidazolylmethanol and = 1-methyl-2-benzimidazolylmethanol with CoCl·6HO in basic methanolic solution. Both compounds feature a cubane-type structure in which the central {CoO} units are built by four Co centers coordinated by alkoxide-bridged oxygen and nitrogen atoms from the deprotonated ligands and stabilized by MeOH molecules and chloride ions.

View Article and Find Full Text PDF

Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.

View Article and Find Full Text PDF

pH-gated bidirectional nanoassembly switches: self-ratiometric D-penicillamine sensing AIE-active Au(I)-TCEP-Cd(II) coordination dynamics.

Anal Methods

September 2025

Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Self-assembly is regarded as a facile method to fabricate luminescent nanomaterials with aggregation induced emission (AIE) properties for optical sensor design. In this work, a pH-controlled self-ratiometric sensing platform utilizing aggregation-induced emission (AIE)-active Au(I)-TCEP-Cd(II) nanoaggregates was developed for highly reliable D-penicillamine (DPA) detection. Through stoichiometric coordination with Cd, oligomeric Au(I)-tris(2-carboxyethyl)phosphine (TCEP) complexes could self-assemble into snowflake-like nanoaggregates (∼100 nm) with strong yellow emission (540 nm) and excellent aqueous stability.

View Article and Find Full Text PDF