A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Theory and Experiment Demonstrate that Sb(V)-Promoted Methane C-H Activation and Functionalization Outcompete Superacid Protonolysis in Sulfuric Acid. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sb(V) in strong Brønsted acid solvents is traditionally assumed to react with light alkanes through superacid protonolysis, which results in carbocation intermediates, H, and carbon oligomerization. In contrast to this general assumption, our density functional theory (DFT) calculations revealed an accessible barrier for C-H activation between methane and Sb(V) in sulfuric acid that could potentially outcompete superacid protonolysis. This prompted us to experimentally examine this reaction in sulfuric acid with oleum, which has never been reported because of presumed superacid reactivity. Reaction of methane at 180 °C for 3 h resulted in very high yields of methyl bisulfate without significant overoxidation. Our DFT calculations show that a C-H activation and Sb-Me bond functionalization mechanism to give methyl bisulfate outcompetes methane protonolysis and many other possible reaction mechanisms, such as electron transfer, proton-coupled electron transfer, and hydride abstraction. Our DFT calculations also explain experimental hydrogen-deuterium exchange studies and the absence of methane carbo-functionalization/oligomerization products. Overall, this work demonstrates that in very strong Brønsted acid solvent, Sb(V) can induce innersphere reaction mechanisms akin to transition metals and outcompete superacid reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c08170DOI Listing

Publication Analysis

Top Keywords

c-h activation
12
outcompete superacid
12
superacid protonolysis
12
sulfuric acid
12
dft calculations
12
strong brønsted
8
brønsted acid
8
superacid reactivity
8
methyl bisulfate
8
reaction mechanisms
8

Similar Publications