A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The phage defence island of a multidrug resistant plasmid uses both BREX and type IV restriction for complementary protection from viruses. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8565348PMC
http://dx.doi.org/10.1093/nar/gkab906DOI Listing

Publication Analysis

Top Keywords

defence island
12
island multidrug
8
multidrug resistant
8
resistant plasmid
8
bacterial defence
8
phage protection
8
defence
5
phage defence
4
plasmid brex
4
brex type
4

Similar Publications