Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pilots and crew of domestic flights are exposed to transient periods of mild reductions of partial pressure of inspired oxygen each day, and this might have functional consequence on their performance in the long range. Here, we exposed mice to mild reductions of oxygen exposure (ROE) four times per day for 21 days by lowering oxygen partial pressure to levels corresponding to an altitude of about 2300 m, which is the quote of pressurization of the air cabin. Four groups of mice were studied: unstressed or stressed mice exposed to ROE or normoxic conditions. Mice were exposed to chronic unpredictable stress (CUS) for 28 days, and ROE was delivered in the last 21 days of CUS. In normoxic mice, CUS caused anhedonia in the sucrose preference test, anxiety-like behaviour in the open field test, learning impairment in the Morris water maze, reduced hippocampal neurogenesis, increased serum corticosterone levels and increased expression of depression-related genes (Pclo, Mthfr and Grm5) in the hippocampus. All these changes were reversed by ROE, which had little or no effect in unstressed mice. These findings suggest that ROE simulating air cabin conditions of domestic flights may enhance resilience to stress improving mood, anxiety and learning ability.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.15495DOI Listing

Publication Analysis

Top Keywords

oxygen exposure
8
cabin conditions
8
enhance resilience
8
resilience stress
8
domestic flights
8
mild reductions
8
partial pressure
8
air cabin
8
mice exposed
8
mice
7

Similar Publications

Cdk1-dependent lamin aggregation underlies oxidative stress-induced nuclear shape abnormalities.

BMB Rep

September 2025

Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499; Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon 16499; BK21 R&E Initiative for Advanced Precision Medicine, Ajou University School of Medicine, Suwon 16499, Korea.

Altered nuclear morphology, one of the characteristics of cancer cells, is often indicative of tumor prognosis. While reactive oxygen species (ROS) are known to induce nuclear morphology changes, mechanisms underlying these effects remain elusive, particularly regarding nuclear assembly. We hypothesized that mitotic cells might exhibit increased susceptibility to ROSinduced nuclear deformation due to the dynamic nature of nuclear envelope during mitosis, i.

View Article and Find Full Text PDF

Mechanistic studies have been suggested that toxic effects of bleomycin are generally attributed to formation of free radicals, mitochondria damages, oxidative stress and inflammation. For this purpose, we explored the direct exposure of bleomycin and protective effects of the betanin and vanillic acid separately against its possible toxicity in rat lung isolated mitochondria. Various mitochondrial toxicity parameters were evaluated including; succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, malondialdehyde (MDA) and glutathione disulfide (GSSG) levels.

View Article and Find Full Text PDF

Boosting biocompatibility and minimizing inflammation in electrospun polyvinylidene fluoride (PVDF) cardiac patches through optimized low-pressure plasma treatment.

Biomater Adv

September 2025

Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.

Tailoring surface characteristics is key to guiding scaffold interaction with the biological environment, promoting successful biointegration while minimizing immune responses and inflammation. In cardiac tissue engineering, polyvinylidene fluoride (PVDF) is a material of choice for its intrinsic piezoelectric properties, which can be enhanced through electrospinning, also enabling the fabrication of nanofibrous structures mimicking native tissue. However, the inherent hydrophobicity of PVDF can hinder its integration with biological tissues.

View Article and Find Full Text PDF

Room Temperature Flexible Gas Sensor Based on MOF-Derived Porous Carbon Skeletons Loaded with ZnO Nanoparticles and DMF Detection.

ACS Appl Mater Interfaces

September 2025

Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.

View Article and Find Full Text PDF

Bromuconazole, a widely used triazole-based pesticide, effectively controls fungal diseases in agriculture. Bromuconazole cause a potential toxic effect to non-target organisms and can have a negative impact on reproductive health in women, due to its long half-life and bioaccumulation ability. This study identifies the cytotoxicity and adverse effects of bromuconazole on trophoblastic cells (HTR-8/SVneo) and human endometrial cells (T HESCs), which are involved in implantation processes.

View Article and Find Full Text PDF