A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Role of bacterial persistence in spatial population expansion. | LitMetric

Role of bacterial persistence in spatial population expansion.

Phys Rev E

Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen 37077, Germany.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial persistence, tolerance to antibiotics via stochastic phenotype switching, provides a survival strategy and a fitness advantage in temporally fluctuating environments. Here we study its possible benefit in spatially varying environments using a Fisher wave approach. We study the spatial expansion of a population with stochastic switching between two phenotypes in spatially homogeneous conditions and in the presence of an antibiotic barrier. Our analytical results show that the expansion speed in growth-supporting conditions depends on the fraction of persister cells at the leading edge of the population wave. The leading edge contains a small fraction of persister cells, keeping the effect on the expansion speed minimal. The fraction of persisters increases gradually in the interior of the wave. This persister pool benefits the population when it is stalled by an antibiotic environment. In that case, the presence of persister enables the population to spread deeper into the antibiotic region and to cross an antibiotic region more rapidly. Further we observe that optimal switching rates maximize the expansion speed of the population in spatially varying environments with alternating regions of growth permitting conditions and antibiotics. Overall, our results show that stochastic switching can promote population expansion in the presence of antibiotic barriers or other stressful environments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.034401DOI Listing

Publication Analysis

Top Keywords

expansion speed
12
bacterial persistence
8
population expansion
8
antibiotics stochastic
8
spatially varying
8
varying environments
8
stochastic switching
8
presence antibiotic
8
fraction persister
8
persister cells
8

Similar Publications