Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Carotenoids are naturally occurring pigments accounting for the brilliant colors of fruits and vegetables. They may display antioxidant and anti-inflammatory properties in humans besides being precursors to vitamin A. There is a gap of knowledge in examining their role within colonic epithelial cells. We proposed to address this research gap by examining the effects of a major dietary carotenoid, β-carotene, in the epithelial cell model. We examined the function of β-carotene in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway. We conducted western blotting assays to evaluate expressions of TLR4 and its co-receptor, CD14. We also examined NF-κB p65 subunit protein levels in the model system. Furthermore, we studied the impact of β-carotene on the tight junction proteins, claudin-1, and occludin. We further carried out immunocytochemistry experiments to detect and visualize claudin-1 expression. β-Carotene reduced LPS-induced intestinal inflammation in colonic epithelial cells. β-Carotene also promoted the levels of tight junction proteins, which might lead to enhanced barrier function. β-Carotene could play a role in modulating the LPS-induced TLR4 signaling pathway and in enhancing tight junction proteins. The findings will shed light on the role of β-carotene in colonic inflammation and also potentially in metabolic disorders since higher levels of LPS might induce features of metabolic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8502815 | PMC |
http://dx.doi.org/10.3389/fnut.2021.723480 | DOI Listing |