A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Poloxamer 407 Based Gel Formulations for Transungual Delivery of Hydrophobic Drugs: Selection and Optimization of Potential Additives. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current study aimed to develop poloxamer 407 (P407) gel for transungual delivery of antifungal hydrophobic drugs with sufficient gel strength and drug loading. Gel strength and drug loading of P407 gel was improved by use of functional additives. Hydration enhancement effect was used to select optimum nail penetration enhancer. Face-centered central composite design (FCCCD) was used to observe the effect of the selected penetration enhancer (thioglycolic acid (TGA)) and cosolvent (ethanol) on gelation behavior to develop formulation with enough loading of hydrophobic drug, i.e., terbinafine HCl (TBN), and its permeation across the nail plate without compromising on gel strength. It was observed that increasing concentration of P407 and TGA significantly reduced gelation temperature and enhanced the gel strength of P407 gel and can be used to improve P407 gel strength. Under the scanning electron microscope, the significant effect of TGA as an ungual penetration enhancer was observed on the morphology of the nail plate. Optimized P407 gel prepared with modified cold method showed a gelation temperature of 8.7 ± 0.16 °C, gel strength of 122 ± 7.5 s and drug loading of 1.2% /, which was four times more than the drug loading in the gels prepared with conventional cold method. Rheological behavior was pseudoplastic with 47.75 ± 3.48% of gel erosion after 12 washings and 67.21 ± 2.16% of drug release after 12 h. A cumulative amount of TBN permeated from P407 gel with and without PE after 24 h was 27.30 ± 4.18 and 16.69 ± 2.31 µg/cm, respectively. Thioglycolic acid can be used as a nail penetration enhancer without the chemical modification or addition of extra additives while retaining the gel strength. Water miscible cosolvents with moderate evaporability such as ethanol, can be incorporated to P407 gel by minor modification in method of preparation to load the required dose of hydrophobic drugs. Developed P407 gel formulation with sufficient gel strength and drug loading will be a promising carrier for transungual delivery of hydrophobic antifungal agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8512385PMC
http://dx.doi.org/10.3390/polym13193376DOI Listing

Publication Analysis

Top Keywords

p407 gel
32
gel strength
32
drug loading
20
gel
17
penetration enhancer
16
transungual delivery
12
hydrophobic drugs
12
strength drug
12
p407
9
poloxamer 407
8

Similar Publications