A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Control of Sulfate and Nitrate Reduction by Setting Hydraulic Retention Time and Applied Potential on a Membraneless Microbial Electrolysis Cell for Perchloroethylene Removal. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A membraneless microbial electrolysis cell (MEC) has been developed for perchloroethylene (PCE) removal through the reductive dechlorination reaction. The MEC consists of a tubular reactor of 8.24 L equipped with a graphite-granule working electrode which stimulates dechlorinating microorganisms while a graphite-granule cylindrical envelopment contained in a plastic mesh constituted the counter electrode of the MEC. Synthetic PCE-contaminated groundwater has been used as the feeding solution to test the nitrate and sulfate reduction reactions on the MEC performance at different hydraulic retention times (HRTs) (4.1, 1.8, and 1.2) and different cathodic potentials [-350, -450, and -650 mV vs standard hydrogen electrode (SHE)]. The HRT decrease from 4.1 to 1.8 d promoted a considerable increase in sulfate removal from 38 ± 11 to 113 ± 26 mg/Ld with a consequent current increase, while a shorter HRT of 1.2 d caused a partial inhibition of sulfate reduction with a consequent current decrease from -99 ± 3 to -52 ± 6 mA. Similarly, the cathodic potential investigation showed a direct correlation of current generation and sulfate removal in which the utilization of a cathodic potential of -350 mV versus SHE allowed for an 80% decrease in the sulfate removal rate with a consequent current decrease from -163 ± 7 to 41 ± 5 mA. The study showed the possibility to mitigate the energy consumption of the process by avoiding side reactions and current generation, through the selection of an appropriate HRT and applied cathodic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495709PMC
http://dx.doi.org/10.1021/acsomega.1c03001DOI Listing

Publication Analysis

Top Keywords

sulfate removal
12
consequent current
12
cathodic potential
12
hydraulic retention
8
membraneless microbial
8
microbial electrolysis
8
electrolysis cell
8
sulfate reduction
8
current decrease
8
current generation
8

Similar Publications