4-Ethylphenol, A Volatile Organic Compound Produced by Disease-Resistant Soybean, Is a Potential Botanical Agrochemical Against Oomycetes.

Front Plant Sci

Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oomycetes, represented by , are seriously harmful to agricultural production, resulting in a decline in grain quality and agricultural products and causing great economic losses. Integrated management of oomycete diseases is becoming more challenging, and plant derivatives represent effective alternatives to synthetic chemicals as novel crop protection solutions. Biologically active secondary metabolites are rapidly synthesized and released by plants in response to biotic stress caused by herbivores or insects, as well as pathogens. In this study, we identified groups of volatile organic compounds (VOCs) from soybean plants inoculated with , the causal agent of soybean root rot. 4-Ethylphenol was present among the identified VOCs and was induced in the incompatible interaction between the plants and the pathogen. 4-Ethylphenol inhibited the growth of and and had toxicity to sporangia formation and zoospore germination by destroying the pathogen cell membrane; it had a good control effect on soybean root rot and tobacco black shank in the safe concentration range. Furthermore, 4-Ethylphenol had a potent antifungal activity against three soil-borne phytopathogenic fungi, , , and var , and four forma specialis of , which suggest a potential to be an eco-friendly biological control agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492902PMC
http://dx.doi.org/10.3389/fpls.2021.717258DOI Listing

Publication Analysis

Top Keywords

volatile organic
8
soybean root
8
root rot
8
4-ethylphenol
4
4-ethylphenol volatile
4
organic compound
4
compound produced
4
produced disease-resistant
4
soybean
4
disease-resistant soybean
4

Similar Publications

Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Liquid chromatography has advanced considerably since its introduction in the 1970s, with reversed-phase liquid chromatography (RPLC) becoming the dominant technique for separating non-volatile molecules. A key strategy for optimising separation conditions is the modelling of chromatographic retention from experimental data. Traditionally, this is achieved by fitting model parameters for each solute, resulting in individual solute models (ISMs).

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF

A magnetic porous carbon material achieving rapid and convenient separation of volatile cinnamaldehyde in cinnamon.

J Chromatogr A

September 2025

State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China. Electronic address:

Rapid and convenient enrichment and detection of volatile cinnamaldehyde (Cin) from a common herbal medicine, cinnamon, was achieved through a reliable MSPE-HPLC-DAD approach. The magnetic porous carbon material (Carbon-FeC/lignin) used for MSPE was prepared as follows. First, the metal organic framework (MIL-101-NH (Fe)) was synthesized using the solvothermal method.

View Article and Find Full Text PDF