A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nanophotonic inverse design with deep neural networks based on knowledge transfer using imbalanced datasets. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep neural networks (DNNs) have been used as a new method for nanophotonic inverse design. However, DNNs need a huge dataset to train if we need to select materials from the material library for the inverse design. This puts the DNN method into a dilemma of poor performance with a small training dataset or loss of the advantage of short design time, for collecting a large amount of data is time consuming. In this work, we propose a multi-scenario training method for the DNN model using imbalanced datasets. The imbalanced datasets used by our method is nearly four times smaller compared with other training methods. We believe that as the material library increases, the advantages of the imbalanced datasets will become more obvious. Using the high-precision predictive DNN model obtained by this new method, different multilayer nanoparticles and multilayer nanofilms have been designed with a hybrid optimization algorithm combining genetic algorithm and gradient descent optimization algorithm. The advantage of our method is that it can freely select discrete materials from the material library and simultaneously find the inverse design of discrete material type and continuous structural parameters of the nanophotonic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.435427DOI Listing

Publication Analysis

Top Keywords

inverse design
16
imbalanced datasets
16
material library
12
nanophotonic inverse
8
deep neural
8
neural networks
8
materials material
8
dnn model
8
optimization algorithm
8
method
6

Similar Publications