A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Straightness metric for measurement of turbulence-induced distortion in long-range imaging. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Algorithms used for mitigation of the effects of atmospheric turbulence on video sequences often rely on a process for creating a reference image to register all of the frames. Because such a pristine image is generally not available, no-reference image quality metrics can be used to identify frames in a sequence that have minimum distortion. Here, we propose a metric that quantifies image warping by measuring image straightness based on line detection. The average length of straight lines in a frame is used to select best frames in a sequence and to generate a reference frame for a subsequent dewarping algorithm. We perform tests with this metric on simulated data that exhibits varying degrees of distortion and blur and spans normalized turbulence strengths between 0.75 and 4.5. We show, through these simulations, that the metric can differentiate between weak and moderate turbulence effects. We also show in simulations that the optical flow that uses a reference frame generated by this metric produces consistently improved image quality. This improvement is even higher when we employ the metric to guide optical flow that is applied to three real video sequences taken over a 7 km path.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.425464DOI Listing

Publication Analysis

Top Keywords

video sequences
8
image quality
8
frames sequence
8
reference frame
8
optical flow
8
image
6
metric
5
straightness metric
4
metric measurement
4
measurement turbulence-induced
4

Similar Publications