98%
921
2 minutes
20
The kidneys regulate diverse biological processes such as water, electrolyte, and acid-base homeostasis. Physiological functions of the kidney are executed by multiple cell types arranged in a complex architecture across the corticomedullary axis of the organ. Recent advances in single-cell transcriptomics have accelerated the understanding of cell type-specific gene expression in renal physiology and disease. However, enzyme-based tissue dissociation protocols, which are frequently utilized for single-cell RNA-sequencing (scRNA-seq), require mostly fresh (non-archived) tissue, introduce transcriptional stress responses, and favor the selection of abundant cell types of the kidney cortex resulting in an underrepresentation of cells of the medulla. Here, we present a protocol that avoids these problems. The protocol is based on nuclei isolation at 4 °C from frozen kidney tissue. Nuclei are isolated from a central piece of the mouse kidney comprised of the cortex, outer medulla, and inner medulla. This reduces the overrepresentation of cortical cells typical for whole-kidney samples for the benefit of medullary cells such that data will represent the entire corticomedullary axis at sufficient abundance. The protocol is simple, rapid, and adaptable and provides a step towards the standardization of single-nuclei transcriptomics in kidney research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/62901 | DOI Listing |
PLoS One
September 2025
Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America.
The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.
View Article and Find Full Text PDFSurg Case Rep
September 2025
Department of Pathology, Self-Defense Forces Central Hospital, Tokyo, Japan.
Introduction: Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that most commonly originates in the pleura but can also occur at extrapleural sites, including the abdominal cavity. Among these, primary SFT of the stomach is exceptionally rare. Due to overlapping clinical, endoscopic, and radiologic characteristics, distinguishing SFT from gastrointestinal stromal tumor (GIST) can be particularly challenging.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
To investigate the clinicopathological and genetic characteristics of monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL). The forty-two MEITL cases diagnosed in the Department of Pathology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China from 2016 to 2022 was retrospectively analyzed. Clinical data were collected, and follow-up was performed.
View Article and Find Full Text PDFJ Virol
September 2025
Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Double-stranded RNA (dsRNA), which induces an innate immune response against viral infections, is rarely detected in influenza A virus (IAV)-infected cells. Nevertheless, we previously reported that the influenza A viral ribonucleoprotein (vRNP) complex generates looped dsRNAs during RNA synthesis . This finding suggests that IAV possesses a specific mechanism for sequestering dsRNA within infected cells, thereby enabling viral evasion of the innate immune response.
View Article and Find Full Text PDFExp Cell Res
September 2025
Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100,
The characteristic pathological change in chronic pancreatitis (CP) is pancreatic fibrosis. In the early stages of CP development, injured acinar cells induce the infiltration of inflammatory cells, followed by pancreatic stellate cell (PSC) activation. Activated PSC induce the deposition of extracellular matrix (ECM) and promote the development of pancreatic fibrosis.
View Article and Find Full Text PDF