98%
921
2 minutes
20
Background: Coronary artery disease (CAD) is a common cardiovascular disease, and abnormal blood lipid metabolism is an important risk factor. Transforming growth factor-ß (TGF-ß) and its receptor (TGF-ßR) can inhibit the release of inflammatory factors through the SMAD pathway-mediated immune response, thereby suppressing the progression of CAD. Endoglin (TGF-ßRIII), a TGF-ßR family homologous receptor protein, is directly involved in the immunoregulatory process, but the exact mechanism is unclear. This study aimed to clarify the pathophysiological effects of endoglin on the development of atherosclerosis and to explore the mechanism of the signalling pathway.
Methods: We downloaded the GEO dataset to perform a functional analysis of SMAD family activity and TGF-ß receptor protein expression in the monocyte expression profiles of patients with familial hyperlipidaemia (FH). The effect of endoglin on endothelial cell proliferation, migration, and apoptosis was examined by disrupting the endoglin gene in human umbilical vein endothelial cells (HUVECs) and validated by western blotting. The related genes and pathways regulated by endoglin were obtained by analysing the sequencing data.
Results: Research has shown that interference with endoglin can promote the proliferation and migration and significantly inhibit the apoptosis of vascular endothelial cells. Interference with endoglin particularly encourages the expression of VEGFB in vascular endothelial cells.
Conclusion: The endoglin gene in vascular endothelial cells regulates the PI3K-Akt, Wnt, TNF, and cellular metabolism pathways by activating the SMAD pathway. RAB26, MR1, CCL2, SLC29A4, IBTK, VEGFB, and GOLGA8B play critical roles. Endoglin interacts closely with 11 proteins such as CCL2 and SEPRINE1, which participate in the vital pathway of plaque formation. Interference with endoglin can alter the course of coronary atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8487532 | PMC |
http://dx.doi.org/10.1186/s12944-021-01545-2 | DOI Listing |
J Biomed Sci
September 2025
Division of Gastroenterology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Paris Cité University, INSERM UMR-S 970, Paris Cardiovascular Research Centre, Paris, France.
Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.
View Article and Find Full Text PDFMol Syst Biol
September 2025
Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Gua
Communication between group 3 innate lymphoid cells (ILC3) and other immune cells, as well as intestinal epithelial cells, is pivotal in regulating intestinal inflammation. This study, for the first time, underscores the importance of crosstalk between intestinal endothelial cells (ECs) and ILC3. Our single-cell transcriptome analysis combined with protein expression detection revealed that ECs significantly increased the population of interleukin (IL)-22 ILC3 through interactions mediated by endothelin-1 (ET-1) and its receptor endothelin A receptor (EDNRA).
View Article and Find Full Text PDFLeukemia
September 2025
University Children's Hospital Zurich, Pediatric Oncology and Children's Research Center, Zurich, Switzerland.
Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.
View Article and Find Full Text PDF