Seal bomb explosion sound source characterization.

J Acoust Soc Am

Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0205, USA.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small explosive charges, called seal bombs, used by commercial fisheries to deter marine mammals from depredation and accidental bycatch during fishing operations, produce high level sounds that may negatively impact nearby animals. Seal bombs were exploded underwater and recorded at various ranges with a calibrated hydrophone to characterize the pulse waveforms and to provide appropriate propagation loss models for source level (SL) estimates. Waveform refraction became important at about 1500 m slant range with approximately spherical spreading losses observed at shorter ranges. The SL for seal bombs was estimated to be 233 dB re 1 μPa m; however, for impulses such as explosions, better metrics integrate over the pulse duration, accounting for the total energy in the pulse, including source pressure impulse, estimated as 193 Pa m s, and sound exposure source level, estimated as 197 dB re 1 μPa m s over a 2 ms window. Accounting for the whole 100 ms waveform, including the bubble pulses and sea surface reflections, sound exposure source level was 203 dB re 1 μPa m s. Furthermore, integrating the energy over an entire event period of multiple explosions (i.e., cumulative sound exposure level) should be considered when evaluating impact.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0006101DOI Listing

Publication Analysis

Top Keywords

seal bombs
12
source level
12
sound exposure
12
exposure source
8
source
5
level
5
seal
4
seal bomb
4
bomb explosion
4
sound
4

Similar Publications

Seal bomb explosion sound source characterization.

J Acoust Soc Am

September 2021

Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0205, USA.

Small explosive charges, called seal bombs, used by commercial fisheries to deter marine mammals from depredation and accidental bycatch during fishing operations, produce high level sounds that may negatively impact nearby animals. Seal bombs were exploded underwater and recorded at various ranges with a calibrated hydrophone to characterize the pulse waveforms and to provide appropriate propagation loss models for source level (SL) estimates. Waveform refraction became important at about 1500 m slant range with approximately spherical spreading losses observed at shorter ranges.

View Article and Find Full Text PDF

Swimming induced pulmonary edema (SIPE) is associated with both SCUBA diving and strenuous surface swimming; however, the majority of reported cases and clinically observed cases tend to occur during or after aggressive surface swimming. Capillary stress failure appears to be central to the pathophysiology of this disorder. Regional pulmonary capillaries are exposed to relatively high pressures secondary to increased vascular volume, elevation of pulmonary vascular resistance, and regional differences in perfusion secondary to forces of gravity and high cardiac output.

View Article and Find Full Text PDF

Biological warfare (BW) aerosol attacks are different from chemical attacks in that they may provide no warning/all clear signals that allow the soldier to put on or remove his M17/M40 protective mask. Methods are now being perfected to detect a BW aerosol cloud using an airborne (helicopter) pulsed laser system to scan the lower altitudes upwind from a troop concentration of corps size, and to sample and analyze the nature of the aerosol within a brief time interval. This system has certain limitations and vulnerabilities, since it is designed specifically to detect a line-type aerosol attack.

View Article and Find Full Text PDF

In forensic cases involving mail bombs, extortion, kidnapping or threatening letters, biological evidence such as the saliva used to attach the stamp and seal the envelope could be used for genetic analysis. We have developed a highly sensitive semi-nested PCR method for the HLA-DRB1 locus; suitable for the analyses of very limited amounts of DNA. When applied to a set of stamps and envelopes with saliva from control individuals, typing results were consistent with those obtained using hairs drawn from the same individuals.

View Article and Find Full Text PDF