98%
921
2 minutes
20
The hypothalamus-pituitary axis is involved in digest processing, stress response, energy storage and many other processes. In birds, this control differs from in mammals, such as regulation of appetite and satiety centre. The transcriptomics analyses of both brain structures can explain and identify the molecular processes related to body growth and development and nutritional status. Many reports describe chicken transcriptome in literature, but gene expression studies in the other poultry species are extremely rare. Therefore, the present research undertook the attempt to explain hypothalamus-pituitary processes in domestic geese-Polish White Kołuda®, main Polish line. After 16 weeks of fattening, significant differences in geese weight were observed. Therefore, transcriptome of pituitary and hypothalamus profiles could be compared between low and high growth rate geese groups. Due to the lack of domestic geese genome assembly in the public databases, we used three mapping approaches: de novo analysis, mapping to two other pink-footed and swan geese genomes. The functional examination showed that the most enriched biological process in the geese hypothalamus covered the immune response. Moreover, in the hypothalamus, proteins typical for the pituitary such as PRL and GH were differentially expressed (DE). Our study recommends one gene as a candidate for growth rate in geese-the FOS gene, which encodes Fos proto-oncogene-DE in both analysed tissues. The FOS gene is involved in regulating feeding behaviour, immune regulation, stimulating cellular proliferation and controlling growth hormone synthesis. Moreover, the present investigation indicates DE genes involved in gene expression regulation. The study delivers new information about the changes in the pituitary-hypothalamic axis in geese dependent on growth rate differences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/age.13140 | DOI Listing |
Crit Care
September 2025
Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Hufelandstr, 55, Essen, 45239, Germany.
Background: Gender disparities persist in medical research. This study assessed gender representation trends in first and senior authorships in the five highest-ranked critical care journals (by impact factor) over a 20-year period.
Methods: We analyzed author gender distribution from 2005 to 2024.
BMC Pulm Med
September 2025
Division of Cellular Pneumology, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, 23845, Germany.
Background: Volatile anesthetics are gaining recognition for their benefits in long-term sedation of mechanically ventilated patients with bacterial pneumonia and acute respiratory distress syndrome. In addition to their sedative role, they also exhibit anti-bacterial and anti-inflammatory properties, though the mechanisms behind these effects remain only partially understood. In vitro studies examining the prolonged impact of volatile anesthetics on bacterial growth, inflammatory cytokine response, and surfactant proteins - key to maintaining lung homeostasis - are still lacking.
View Article and Find Full Text PDFNat Plants
September 2025
Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
A new Escherichia coli laboratory evolution screen for detecting plant ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) mutations with enhanced CO-fixation capacity has identified substitutions that can enhance plant productivity. Selected were a large subunit catalytic (Met-116-Leu) mutation that increases the k of varying plant Rubiscos by 25% to 40% and a solubility (Ala-242-Val) mutation that improves plant Rubisco biogenesis in E. coli 2- to 10-fold.
View Article and Find Full Text PDFNPJ Antimicrob Resist
September 2025
Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
Studying how antibacterials operate at subinhibitory concentrations reveals how they impede normal growth. While previous works demonstrated drugs can impact multiple aspects of growth, such as prolonging the doubling time or reducing the maximal bacterial load, a systematic understanding of this phenomenon is lacking. It remains unknown if common principles dictate how drugs interfere with growth.
View Article and Find Full Text PDFNPJ Microgravity
September 2025
Department of Mechanical Engineering, UC Santa Barbara, Santa Barbara, CA, USA.
Microgravity experiments on board the International Space Station, combined with particle-resolved direct numerical simulations, were conducted to investigate the long-term flocculation behavior of clay suspensions in saline water in the absence of gravity. After an initial homogenization of the suspensions, different clay compositions were continuously monitored for 99 days, allowing a detailed analysis of aggregate growth through image processing. The results indicate that the onboard oscillations (g-jitter) may have accelerated the aggregation process.
View Article and Find Full Text PDF