Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2021.09.012DOI Listing

Publication Analysis

Top Keywords

tcp14 tcp15
4
tcp15 mediate
4
mediate promotion
4
promotion seed
4
seed germination
4
germination gibberellins
4
gibberellins arabidopsis
4
arabidopsis thaliana
4
tcp14
1
mediate
1

Similar Publications

Class I TCP transcription factors TCP14 and TCP15 promote axillary branching in Arabidopsis by counteracting the action of Class II TCP BRANCHED1.

New Phytol

September 2024

Instituto de Agrobiotecnología del Litoral (CONICET-UNL), FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina.

Shoot branching is determined by a balance between factors that promote axillary bud dormancy and factors that release buds from the quiescent state. The TCP family of transcription factors is classified into two classes, Class I and Class II, which usually play different roles. While the role of the Class II TCP BRANCHED1 (BRC1) in suppressing axillary bud development in Arabidopsis thaliana has been widely explored, the function of Class I TCPs in this process remains unknown.

View Article and Find Full Text PDF

Plant organ size is an important agronomic trait that makes a significant contribution to plant yield. Despite its central importance, the genetic and molecular mechanisms underlying organ size control remain to be fully clarified. Here, we report that the trithorax group protein ULTRAPETALA1 (ULT1) interacts with the TEOSINTE BRANCHED1/CYCLOIDEA/PCF14/15 (TCP14/15) transcription factors by antagonizing the LIN-11, ISL-1, and MEC-3 (LIM) peptidase DA1, thereby regulating organ size in Arabidopsis.

View Article and Find Full Text PDF

Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin.

Plant Mol Biol

January 2021

Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, CONICET-Universidad Nacional del Litoral, Centro Científico Tecnológico CONICET Santa Fe. Colectora Ruta Nac. Nº 168 km 0, Paraje el Pozo s/n, 3000, Santa Fe, Ar

Two class I TCP transcription factors are required for an efficient elongation of hypocotyls in response to auxin and for the correct expression of a subset of auxin-inducible genes In this work, we analyzed the response to auxin of plants with altered function of the class I TEOSINTE BRANCHED 1, CYCLOIDEA, PCF (TCP) transcription factors TCP14 and TCP15. Several SMALL AUXIN UP RNA (SAUR) genes showed decreased expression in mutant plants defective in these TCPs after an increase in ambient temperature to 29 °C, a condition that causes an increase in endogenous auxin levels. Overexpression of SAUR63 caused a more pronounced elongation response in the mutant than in the wild-type at 29 °C, suggesting that the decreased expression of SAUR genes is partly responsible for the defective elongation at warm temperature.

View Article and Find Full Text PDF

Seed dormancy is an adaptive trait defining where and when plants are established. Diverse signals from the environment are used to decide when to initiate seed germination, a process driven by the expansion of cells within the embryo. How these signals are integrated and transduced into the biomechanical changes that drive embryo growth remains poorly understood.

View Article and Find Full Text PDF