Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A series of gas-phase reactants is used to treat a Cu-exchanged mordenite zeolite with the aim of studying the influence of the reaction environment on the formation of Cu pairs. The rearrangement of Cu ions to form multimeric sites as a function of their oxidation state was probed by X-ray absorption spectroscopy (XAS) and also by applying advanced analysis through wavelet transform, a method able to specifically locate Cu-Cu interactions also in the presence of overlapping contributions from other scattering paths. The nature of the Cu-oxo species formed upon oxidation was further crosschecked by DFT-assisted fitting of the EXAFS data and by resonant Raman spectroscopy. Altogether, the Cu /Cu speciation clearly correlates with Cu proximity, with metal ion pairs quantitatively forming under an oxidative environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298398 | PMC |
http://dx.doi.org/10.1002/anie.202109705 | DOI Listing |