A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparative study with practical validation of photovoltaic monocrystalline module for single and double diode models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A photovoltaic (PV) module is an equipment that converts solar energy to electrical energy. A mathematical model should be presented to show the behavior of this device. The well-known single-diode and double-diode models are utilized to demonstrate the electrical behavior of the PV module. "Matlab/Simulink" is used to model and simulate the PV models because it is considered a major software for modeling, analyzing, and solving dynamic system real problems. In this work, a new modeling method based on the "Multiplexer and Functions blocks" in the "Matlab/Simulink Library" is presented. The mathematical analysis of single and double diodes is conducted on the basis of their equivalent circuits with simple modification. The corresponding equations are built in Matlab by using the proposed method. The unknown internal parameters of the PV panel circuit are extracted by using the PV array tool in Simulink, which is a simple method to obtain the PV parameters at certain weather conditions. Double-diode model results are compared with the single-diode model under various irradiances and temperatures to verify the performance and accuracy of the proposed method. The proposed method shows good agreement in terms of the I-V and P-V characteristics. A monocrystalline NST-120 W PV module is used to validate the proposed method. This module is connected to a variable load and tested for one summer day. The experimental voltage, current, and power are obtained under various irradiances and temperatures, and the I-V and P-V characteristics are obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476523PMC
http://dx.doi.org/10.1038/s41598-021-98593-6DOI Listing

Publication Analysis

Top Keywords

proposed method
16
single double
8
irradiances temperatures
8
i-v p-v
8
p-v characteristics
8
method
6
module
5
comparative study
4
study practical
4
practical validation
4

Similar Publications