Potential of poly(alkylene terephthalate)s to control endothelial cell adhesion and viability.

Mater Sci Eng C Mater Biol Appl

Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent, Belgium. Electronic address:

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Poly(ethylene terephthalate) (PET) is known for its various useful characteristics, including its applicability in cardiovascular applications, more precisely as synthetic bypass grafts for large diameter (≥ 6 mm) blood vessels. Although it is widely used, PET is not an optimal material as it is not interactive with endothelial cells, which is required for bypasses to form a complete endothelium. Therefore, in this study, poly(alkylene terephthalate)s (PATs) have been studied. They were synthesized via a single-step solution polycondensation reaction, which requires mild reaction conditions and avoids the use of a catalyst or additives like heat stabilizers. A homologous series was realized in which the alkyl chain length varied from 5 to 12 methylene groups (n = 5-12). Molar masses up to 28,000 g/mol were obtained, while various odd-even trends were observed with modulated differential scanning calorimetry (mDSC) and rapid heat-cool calorimetry (RHC) to access the thermal properties within the homologous series. The synthesized PATs have been subjected to in vitro cell viability assays using Human Umbilical Vein Endothelial Cells (HUVECs) and Human Dermal Microvascular Endothelial Cells (HDMECs). The results showed that HUVECs adhere and proliferate most pronounced onto PAT surfaces, which could be attributed to the surface roughness and morphology as determined by atomic force microscopy (AFM) (i.e. R = 204.7 nm). HDMECs were investigated in the context of small diameter vessels and showed superior adhesion and proliferation after seeding onto PAT substrates. These preliminary results already pave the way towards the use of PAT materials as substrates to support endothelial cell adhesion and growth. Indeed, as superior endothelial cell interactivity compared to PET was observed, time-consuming and costly surface modifications of PET grafts could be avoided by exploiting this novel material class.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112378DOI Listing

Publication Analysis

Top Keywords

endothelial cell
12
endothelial cells
12
polyalkylene terephthalates
8
cell adhesion
8
homologous series
8
endothelial
6
potential polyalkylene
4
terephthalates control
4
control endothelial
4
cell
4

Similar Publications

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF

Endothelial cell-ILC3 crosstalk via the ET-1/EDNRA axis promotes NKp46ILC3 glycolysis to alleviate intestinal inflammation.

Cell Mol Immunol

September 2025

Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Gua

Communication between group 3 innate lymphoid cells (ILC3) and other immune cells, as well as intestinal epithelial cells, is pivotal in regulating intestinal inflammation. This study, for the first time, underscores the importance of crosstalk between intestinal endothelial cells (ECs) and ILC3. Our single-cell transcriptome analysis combined with protein expression detection revealed that ECs significantly increased the population of interleukin (IL)-22 ILC3 through interactions mediated by endothelin-1 (ET-1) and its receptor endothelin A receptor (EDNRA).

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF