98%
921
2 minutes
20
The increasing demand for ornamental, cosmetic and pharmaceutical products is driving exploitation of plant species globally. Sub-Saharan Africa harbours unique and valuable plant resources and is now a target of plant resource depletion. African Sandalwood ( a multi-purpose and drought-tolerant species, has seen increased exploitation for the last thirty years and is now declared endangered. Initiatives to conserve are not yet successful in Africa due to poor understanding of the species. This review surveys relevant research on the ecology, taxonomy, population dynamics, genetic diversity and ethnobotany of , and highlights gaps in the literature for further research. A scoping review of grey literature, scholarly papers and reports was applied with pre-determined criteria to screen relevant information. Review findings indicate is a globally distributed species with no identified center of origin. In Africa, it ranges from Algeria to Ethiopia and south to South Africa; in Europe it occurs in the Iberian Peninsula and Balearic Islands; in Asia from India to China, and also on Socotra. The species has a confusing taxonomy, with unresolved issues in nomenclature, country range distribution, extensive synonymisation and variation in growth form (shrub or tree). The species population is reported to be declining in Africa, but information on population dynamics across its entire range of distribution is anecdotal. Additionally, ecological factors influencing spatial distribution and survival of the species remain unknown. A variety of uses are reported for globally, including: cultural; medicinal and food; dye; perfumery; timber; ethnoveterinary and phytoremediation. Key research areas and implications for conservation of in Sub-Saharan Africa are proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8465005 | PMC |
http://dx.doi.org/10.3390/plants10091780 | DOI Listing |
Arterioscler Thromb Vasc Biol
September 2025
Department of Medicine/Division of Cardiology, University of California Los Angeles. (S.S., C.R.S., L.F., M.P., C.P., Z.Z., J.J.M., R.C.D., D.S., A.J.L.).
Background: In genetic studies with the Hybrid Mouse Diversity Panel, we previously identified a chromosome 9 locus for atherosclerosis. We now identify NNMT (nicotinamide -methyltransferase), an enzyme that degrades nicotinamide, as the causal gene in the locus and show that the underlying mechanism involves salvage of nicotinamide to nicotinamide adenine dinucleotide (NAD).
Methods: Gain/loss of function studies in macrophages were performed to examine the role of NAD levels in macrophage proliferation and apoptosis in atherosclerosis.
Circ Genom Precis Med
September 2025
Feinberg School of Medicine, Northwestern University, Chicago, IL (Z.C., P.G., A.G., G.W.).
Background: Genetic variation contributes to atrial fibrillation (AF), but its impact may vary with age. The Research Program contains whole-genome sequencing of data from 100 574 adult participants with linked electronic health records.
Methods: We assessed clinical, monogenic, and polygenic associations with AF in a cross-sectional analysis, stratified by age: <45 years (n=22 290), 45 to 60 years (n=26 805), and >60 years (n=51 659).
Plant Cell Environ
September 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov
As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.
View Article and Find Full Text PDFBrain Behav
September 2025
The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
Background: Diverse correlations between structural brain abnormalities and the clinical feature of bulimia nervosa (BN) have been identified in previous observational studies.
Objective: To explore the bidirectional causality between BN and brain structural magnetic resonance imaging (MRI) phenotypes.
Methods: Genome-wide association studies (GWAS) of 2441 participants identified genetic variants associated with disordered eating and predicted BN, whereas UK Biobank 3D-T1 MRI data were used to analyze brain structural phenotypes.
Brain Behav
September 2025
Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan.
Background: Y69H (p.Y89H) variant hereditary transthyretin (ATTRv) amyloidosis causes meningeal amyloidosis, with mutant TTR deposits localized to the leptomeninges and vitreous body.
Methods: The effect of tafamidis meglumine on neurological disorders, such as the frequency of transient focal neurological episodes (TFNEs), magnetic resonance imaging (MRI) findings, and TTR levels in cerebrospinal fluid, was investigated in two patients diagnosed with Y69H ATTRv mutation.