98%
921
2 minutes
20
Understanding how viruses with multi-segmented genomes incorporate one copy of each segment into their capsids remains an intriguing question. Here, we review our recent progress and describe the advancements made in understanding the genome packaging mechanism of a model nonenveloped virus, Bluetongue virus (BTV), with a 10-segment (S1-S10) double-strand RNA (dsRNA) genome. BTV (multiple serotypes), a member of the genus in the family, is a notable pathogen for livestock and is responsible for significant economic losses worldwide. This has enabled the creation of an extensive set of reagents and assays, including reverse genetics, cell-free RNA packaging, and bespoke bioinformatics approaches, which can be directed to address the packaging question. Our studies have shown that (i) UTRs enable the conformation of each segment necessary for the next level of RNA-RNA interaction; (ii) a specific order of intersegment interactions leads to a complex RNA network containing all the active components in sorting and packaging; (iii) networked segments are recruited into nascent assembling capsids; and (iv) select capsid proteins might be involved in the packaging process. The key features of genome packaging mechanisms for BTV and related dsRNA viruses are novel and open up new avenues of potential intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473007 | PMC |
http://dx.doi.org/10.3390/v13091841 | DOI Listing |
Front Vet Sci
August 2025
Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China.
Kunjin virus (KUNV), a naturally attenuated strain of West Nile virus (WNV), shares similar transmission modes and hosts-primarily mosquitoes, birds, and horses. Globally, reverse genetics is the principal methodology for characterizing the molecular etiology of flaviviruses. In this study, cytomegalovirus (CMV) promoter-driven KUNV reporter replicons were engineered to incorporate three distinct reporter genes: Nanoluc, oxGFP, and mCherry.
View Article and Find Full Text PDFPatterns (N Y)
July 2025
Channing Division of Network Medicine, Mass General Brigham, 181 Longwood Avenue, Boston, MA 02115, USA.
This opinion piece discusses the Bioconductor project for open-source bioinformatics and the engineering concepts underlying its effectiveness to date. Since the inception of Bioconductor in 2002 with 15 software packages devoted to analysis of DNA microarrays, it has grown into an ecosystem of ∼3,000 packages contributed by more than 1,000 developers. Aspects of the history and commitments are reviewed here to contribute to thinking about the design and orchestration of future open-source software projects.
View Article and Find Full Text PDFEpigenomics
September 2025
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Aims: Psychological resilience refers to an individual's capacity to adapt to adverse events. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional processes, while small extracellular vesicles (sEVs) act as transport vehicles. This study aimed to employ genome-wide profiling to identify and validate differences in the expression of resilience-associated sEV-miRNAs between low resilience (LR) and high resilience (HR) in young adults.
View Article and Find Full Text PDFBiotechnol Appl Biochem
September 2025
Emergency Intensive Care Medicine Center, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China.
Background: Differentially expressed genes (DEGs) have been known to provide important information on disease mechanisms and potential therapeutic targets. The traditional Chinese medicine (TCM) offers a large reservoir of bioactive compounds that could modulate at these targets. This study is an attempt to investigate the biomarkers in Sepsis and COVID-19 using gene expression analysis and molecular modeling validation of TCM-derived candidate compounds targeting key DEGs associated with sepsis.
View Article and Find Full Text PDFEur J Public Health
September 2025
Danish Health Data Authority, Copenhagen, Denmark.
European Union (EU) Member States face challenges in using health data for secondary purposes, constrained by inconsistent digital health systems and limited cross-border sharing. One aim of the European Health Data Space (EHDS) is to facilitate secondary health data use through the HealthData@EU infrastructure and Health Data Access Bodies (HDABs). This article provides recommendations essential for HDAB implementation, informed by the HealthData@EU Pilot project.
View Article and Find Full Text PDF