Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although sandblasting is mainly used to improve bonding between dental zirconia and resin cement, the details on the in-depth damages are limited. The aim of this study was to evaluate phase transformations and subsurface changes after sandblasting in three different dental zirconia (3, 4, and 5 mol% yttria-stabilized zirconia; 3Y-TZP, 4Y-PSZ, and 5Y-PSZ). Zirconia specimens (14.0 × 14.0 × 1.0 mm) were sandblasted using different alumina particle sizes (25, 50, 90, 110, and 125 µm) under 0.2 MPa for 10 s/cm. Phase transformations and residual stresses were investigated using X-ray diffraction and the Williamson-Hall method. Subsurface damages were evaluated with cross-sections by a focused ion beam. Stress field during sandblasting was simulated by the finite element method. The subsurface changes after sandblasting were the emergence of a rhombohedral phase, micro/macro cracks, and compressive/tensile stresses depending on the interactions between blasting particles and zirconia substrates. 3Y-TZP blasted with 110-µm particles induced the deepest transformed layer with the largest compressive stress. The cracks propagated parallel to the surface with larger particles, being located up to 4.5 µm under the surface in 4Y- or 5Y-PSZ subgroups. The recommended sandblasting particles were 110 µm for 3Y-TZP and 50 µm for 4Y-PSZ or 5Y-PSZ for compressive stress-induced phase transformations without significant subsurface damages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470423PMC
http://dx.doi.org/10.3390/ma14185321DOI Listing

Publication Analysis

Top Keywords

phase transformations
16
transformations subsurface
12
subsurface changes
12
dental zirconia
12
three dental
8
particle sizes
8
changes sandblasting
8
4y-psz 5y-psz
8
method subsurface
8
subsurface damages
8

Similar Publications

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF

Structure Engineering Enabled O-O Radical Coupling in Spinel Oxides for Enhanced Oxygen Evolution Reaction.

J Am Chem Soc

September 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.

Developing cost-effective spinel oxide catalysts with both high oxygen evolution reaction (OER) activity and stability is crucial for advancing sustainable clean energy conversion. However, practical applications are often hindered by the activity limitations inherent in the adsorbate evolution mechanism (AEM) and the stability limitations associated with the lattice oxygen mechanism (LOM). Herein, we demonstrate structural changes induced by phase transformation in CoMn spinel oxides, which yield more active octahedral sites with shortened intersite distance.

View Article and Find Full Text PDF

The supported catalytically active liquid metal solution (SCALMS) concept is based on catalytically active metals dissolved in a low-melting-point liquid metal matrix. These solid alloy particles, deposited over a high area support, transform into a liquid alloy under reaction conditions. In this work, GaPt SCALMS materials of varying composition are investigated and focus on the change in the alloy composition during preheating, the actual high temperature propane dehydrogenation at 823 K, and after cool-down.

View Article and Find Full Text PDF

This study comprehensively analyses two new ruthenium(III) complexes, [RuCl(Nic)][(CH)NH]DMF, 1, and [RuCl(3-HPA)][3-HHPA](EtOH), 2, (where Nic = nicotinic acid (vitamin B3), 3-HPA = anion of a 3-hydroxypicolinic acid), as potential antimicrobial agents, highlighting their physicochemical properties, nanoparticle formation, and cytotoxic activity. The complexes were fully characterised by a single crystal X-ray diffraction technique, Fourier-transform infrared, energy-dispersive X-ray, and electron paramagnetic resonance spectroscopies. The synthesis of micro- and nanoparticles (NPs) of these complexes was performed using the liquid anti-solvent crystallisation method.

View Article and Find Full Text PDF