A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification of Clinical Isolates of with Increased Fitness in Colonization of the Murine Gut. | LitMetric

Identification of Clinical Isolates of with Increased Fitness in Colonization of the Murine Gut.

J Fungi (Basel)

Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain.

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The commensal and opportunistic pathogen is an important cause of fungal diseases in humans, with the gastrointestinal tract being an important reservoir for its infections. The study of the mechanisms promoting the commensal state has attracted considerable attention over the last few years, and several studies have focused on the identification of the intestinal human mycobiota and the characterization of genes involved in its establishment as a commensal. In this work, we have barcoded 114 clinical isolates to identify strains with an enhanced fitness in a murine gastrointestinal commensalism model. The 114 barcoded clinical isolates were pooled in four groups of 28 to 30 strains that were inoculated by gavage in mice previously treated with antibacterial therapy. Eight strains that either exhibited higher colonization load and/or remained in the gut after antibiotic removal were selected. The phenotypic analysis of these strains compared to an RFP-tagged SC5314 wild type strain did not reveal any specific trait associated with its increased colonization; all strains were able to filament and six of the eight strains displayed invasive growth on Spider medium. Analysis of one of these strains, CaORAL3, revealed that although mice required previous bacterial microbiota reduction with antibiotics to be able to be colonized, removal of this procedure could take place the same day (or even before) inoculation. This strain was able to colonize the intestine of mice already colonized with without antibiotic treatment in co-housing experiments. CaORAL3 was also able to be established as a commensal in mice previously colonized by another (CaHG43) or the same (CaORAL3) strain. Therefore, we have identified isolates that display higher colonization load than the standard strain SC5314 which will surely facilitate the analysis of the factors that regulate fungal colonization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468482PMC
http://dx.doi.org/10.3390/jof7090695DOI Listing

Publication Analysis

Top Keywords

clinical isolates
12
higher colonization
8
colonization load
8
analysis strains
8
mice colonized
8
strains
7
colonization
5
identification clinical
4
isolates
4
isolates increased
4

Similar Publications