A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Functionality of apigenin as a potent antioxidant with emphasis on bioavailability, metabolism, action mechanism and in vitro and in vivo studies: A review. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Numerous diseases such as cancer, diabetes, cardiovascular, neurodegenerative diseases, etc. are linked with overproduction of reactive oxygen species (ROS) and oxidative stress. Apigenin (5,7,4'-trihydroxyflavone) is a widely distributed flavonoid, responsible for antioxidant potential and chelating redox active metals. Being present as glycosides or polymers, the apigenin degrades to variable amount in the digestive tract; during processing, its activity is also reduced due to high temperature or Fe/Cu addition. Although its metabolism remains elusive, enteric absorption occurs sufficiently to reduce plasma indices of oxidant status. Delayed clearance in plasma and slow liver decomposition enhance its systematic bioavailability. Antioxidant mechanism of apigenin includes: oxidant enzymes inhibition, modulation of redox signaling pathways (NF-kB, Nrf2, MAPK, and P13/Akt), reinforcing enzymatic and nonenzymatic antioxidant, metal chelation, and free radical scavenging. DPPH, ORAC, ABTS, and FRAP are the major in vitro methods for determining the antioxidant potential of apigenin, whereas its protective effects in whole and living cells of animals are examined using in vivo studies. Due to limited information on antioxidant potential of apigenin, its in vitro and in vivo antioxidant effects are, therefore, discussed with action mechanism and interaction with the signaling pathways. This paper concludes that apigenin is a potent antioxidant compound to overcome the difficulties related to oxidative stress and other chronic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13950DOI Listing

Publication Analysis

Top Keywords

antioxidant potential
12
apigenin potent
8
antioxidant
8
potent antioxidant
8
action mechanism
8
vitro vivo
8
vivo studies
8
oxidative stress
8
signaling pathways
8
potential apigenin
8

Similar Publications