A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Characterization and Biotechnological Potential of Extracellular Polysaccharides Synthesized by Strains Isolated from French Polynesia Marine Environments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Marine environments comprise almost three quarters of Earth's surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5-2.1 wt%), pyruvyl (0.2-4.9 wt%), succinyl (1-1.8 wt%), and sulfate (1.98-3.43 wt%); and few peptides (1.72-6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32-53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe, or in the presence of Mg, Cu, or Ca under alkaline conditions. Thus, these EPS could be versatile materials for different applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470090PMC
http://dx.doi.org/10.3390/md19090522DOI Listing

Publication Analysis

Top Keywords

marine environments
12
french polynesia
8
eps
7
marine
5
wt%
5
characterization biotechnological
4
biotechnological potential
4
potential extracellular
4
extracellular polysaccharides
4
polysaccharides synthesized
4

Similar Publications