98%
921
2 minutes
20
Background: Caribou and reindeer across the Arctic spend more than two thirds of their lives moving in snow. Yet snow-specific mechanisms driving their winter ecology and potentially influencing herd health and movement patterns are not well known. Integrative research coupling snow and wildlife sciences using observations, models, and wildlife tracking technologies can help fill this knowledge void.
Methods: Here, we quantified the effects of snow depth on caribou winter range selection and movement. We used location data of Central Arctic Herd (CAH) caribou in Arctic Alaska collected from 2014 to 2020 and spatially distributed and temporally evolving snow depth data produced by SnowModel. These landscape-scale (90 m), daily snow depth data reproduced the observed spatial snow-depth variability across typical areal extents occupied by a wintering caribou during a 24-h period.
Results: We found that fall snow depths encountered by the herd north of the Brooks Range exerted a strong influence on selection of two distinct winter range locations. In winters with relatively shallow fall snow depth (2016/17, 2018/19, and 2019/20), the majority of the CAH wintered on the tundra north of the Brooks Range mountains. In contrast, during the winters with relatively deep fall snow depth (2014/15, 2015/16, and 2017/18), the majority of the CAH caribou wintered in the mountainous boreal forest south of the Brooks Range. Long-term (19 winters; 2001-2020) monitoring of CAH caribou winter distributions confirmed this relationship. Additionally, snow depth affected movement and selection differently within these two habitats: in the mountainous boreal forest, caribou avoided areas with deeper snow, but when on the tundra, snow depth did not trigger significant deep-snow avoidance. In both wintering habitats, CAH caribou selected areas with higher lichen abundance, and they moved significantly slower when encountering deeper snow.
Conclusions: In general, our findings indicate that regional-scale selection of winter range is influenced by snow depth at or prior to fall migration. During winter, daily decision-making within the winter range is driven largely by snow depth. This integrative approach of coupling snow and wildlife observations with snow-evolution and caribou-movement modeling to quantify the multi-facetted effects of snow on wildlife ecology is applicable to caribou and reindeer herds throughout the Arctic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456671 | PMC |
http://dx.doi.org/10.1186/s40462-021-00276-4 | DOI Listing |
New Phytol
September 2025
Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK, 99508, USA.
Snow is an important insulator of Arctic soils during winter and may be a source of soil moisture in summer. Changes in snow depth are likely to affect fine root growth and mortality via changes in soil temperature, moisture, and/or nutrient availability, which could alter aboveground growth and reproduction of Arctic vegetation. We explored fine root dynamics at three contrasting treelines in northwest Alaska.
View Article and Find Full Text PDFCommun Earth Environ
September 2025
Institute of Science and Technology Austria, ISTA, Klosterneuburg, Austria.
Central Asia hosts some of the world's last relatively healthy mountain glaciers and is heavily dependent on snow and ice melt for downstream water supply, though the causes of this stable glacier state are not known. We combine recent in-situ observations, climate reanalysis and remote sensing data to force a land-surface model to reconstruct glacier changes over the last two decades (1999-2023) and disentangle their causes over a benchmark glacierized catchment in Tajikistan. We show that snowfall and snow depth have been substantially lower since 2018, leading to a decline in glacier health and reduced runoff generation.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Institute of Forest Ecology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Vienna, Austria.
Soils are a major reservoir for organic carbon (C), with subsoils (> 20-30 cm soil depth) storing most of this C. Predicting the response of deep-soil C to global change remains a critical research priority; yet long-term field observations for forests are scarce. In this study, we assessed decadal C dynamics in mineral soils to 90 cm depth of 62 temperate mature stands of European beech (Fagus sylvatica) in Austria using data from sampling campaigns in 1984, 2012, and 2022.
View Article and Find Full Text PDFTransl Vis Sci Technol
August 2025
Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
Purpose: To investigate adaptive changes in retinal and choroidal vasculature with increasing retinal surface area in myopia.
Methods: Widefield optical coherence tomography angiography and enhanced depth imaging (EDI)-OCT images of the retina were used to acquire digital images of the choroidal and retinal vasculature in 32 eyes with axial myopia and 14 emmetropic control population eyes. Retinal vessel density was calculated using Otsu's method and used for quantitative comparison of retinal vascular architecture and perfusion ability with increasing retinal surface area.
Land-cover changes and new ecosystem trajectories in Interior Alaska have altered the structure and function of landscapes, with regional warming trends altering carbon and water cycling. Notably, these changes include the increased distribution of tall woody vegetation, trees and shrubs, in landscapes that historically only supported low shrub vegetation cover. In Denali National Park, Alaska, this phenomenon has altered primary succession pathways towards tundra ecosystems with the establishment and expansion of balsam poplar () trees.
View Article and Find Full Text PDF