A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Artificial intelligence approach towards assessment of condition of COVID-19 patients - Identification of predictive biomarkers associated with severity of clinical condition and disease progression. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objectives: Although ML has been studied for different epidemiological and clinical issues as well as for survival prediction of COVID-19, there is a noticeable shortage of literature dealing with ML usage in prediction of disease severity changes through the course of the disease. In that way, predicting disease progression from mild towards moderate, severe and critical condition, would help not only to respond in a timely manner to prevent lethal results, but also to minimize the number of patients in hospitals where this is not necessary.

Methods: We present a methodology for the classification of patients into 4 distinct categories of the clinical condition of COVID-19 disease. Classification of patients is based on the values of blood biomarkers that were assessed by Gradient boosting regressor and which were selected as biomarkers that have the greatest influence in the classification of patients with COVID-19.

Results: The results show that among several tested algorithms, XGBoost classifier achieved best results with an average accuracy of 94% and an average F1-score of 94.3%. We have also extracted 10 best features from blood analysis that are strongly associated with patient condition and based on those features we can predict the severity of the clinical condition.

Conclusions: The main advantage of our system is that it is a decision tree-based algorithm which is easier to interpret, instead of the use of black box models, which are not appealing in medical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438805PMC
http://dx.doi.org/10.1016/j.compbiomed.2021.104869DOI Listing

Publication Analysis

Top Keywords

classification patients
12
condition covid-19
8
severity clinical
8
clinical condition
8
disease progression
8
condition
5
patients
5
disease
5
artificial intelligence
4
intelligence approach
4

Similar Publications