A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparative proteomics of Pinus-Fusarium circinatum interactions reveal metabolic clues to biotic stress resistance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fusarium circinatum, causing pine pitch canker (PPC), affects conifers productivity and health worldwide. Selection and breeding for resistance arises as the most promising approach to fight PPC. Therefore, it is crucial to explore the response of hosts with varying levels of susceptibility to PPC to unveil the genes/pathways behind these phenotypes. We evaluated the dynamics of the needle proteome of a susceptible (Pinus radiata) and a relatively resistant (Pinus pinea) species upon F. circinatum inoculation by GeLC-MS/MS. Integration with physiological data and validation of key genes by qPCR allowed to identify core pathways regulating these contrasting responses. In P. radiata, the pathogen may target both the secondary metabolism to negatively regulate immune response and chloroplast redox proteins to increase energy-producing pathways for amino acid production in its favour. In contrast, chloroplast redox regulation may assure redox homeostasis in P. pinea, as well as nonenzymatic antioxidants. The presence of membrane trafficking-related proteins exclusively in P. pinea likely explains its defence response against F. circinatum. A crosstalk between abscisic acid and epigenetic regulation of gene expression is also proposed in PPC response. These results are useful to support breeding programs aiming to achieve PPC resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13563DOI Listing

Publication Analysis

Top Keywords

chloroplast redox
8
ppc
5
comparative proteomics
4
proteomics pinus-fusarium circinatum
4
pinus-fusarium circinatum interactions
4
interactions reveal
4
reveal metabolic
4
metabolic clues
4
clues biotic
4
biotic stress
4

Similar Publications