Differential inflammation-mediated function of prokineticin 2 in the synovial fibroblasts of patients with rheumatoid arthritis compared with osteoarthritis.

Sci Rep

Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Biopark I, Am Biopark 9, 93053, Regensburg, Germany.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prokineticin 2 (PK2) is a secreted protein involved in several pathological and physiological processes, including the regulation of inflammation, sickness behaviors, and circadian rhythms. Recently, it was reported that PK2 is associated with the pathogenesis of collagen-induced arthritis in mice. However, the role of PK2 in the pathogenesis of rheumatoid arthritis (RA) or osteoarthritis (OA) remains unknown. In this study, we collected synovial tissue, plasma, synovial fluid, and synovial fibroblasts (SF) from RA and OA patients to analyze the function of PK2 using immunohistochemistry, enzyme-linked immunosorbent assays, and tissue superfusion studies. PK2 and its receptors prokineticin receptor (PKR) 1 and 2 were expressed in RA and OA synovial tissues. PKR1 expression was downregulated in RA synovial tissue compared with OA synovial tissue. The PK2 concentration was higher in RA synovial fluid than in OA synovial fluid but similar between RA and OA plasma. PK2 suppressed the production of IL-6 from TNFα-prestimulated OA-SF, and this effect was attenuated in TNFα-prestimulated RA-SF. This phenomenon was accompanied by the upregulation of PKR1 in OA-SF. This study provides a new model to explain some aspects underlying the chronicity of inflammation in RA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443611PMC
http://dx.doi.org/10.1038/s41598-021-97809-zDOI Listing

Publication Analysis

Top Keywords

synovial tissue
12
synovial fluid
12
synovial
9
synovial fibroblasts
8
fibroblasts patients
8
rheumatoid arthritis
8
fluid synovial
8
pk2
7
differential inflammation-mediated
4
inflammation-mediated function
4

Similar Publications

Lysyl oxidase exacerbates rheumatoid arthritis through promoting angiogenesis and the proliferation of fibroblast-like synoviocytes.

Acta Biochim Biophys Sin (Shanghai)

September 2025

Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by synovial hyperplasia and pannus formation, which serves as its primary pathological feature and may ultimately result in joint deformities. Lysyl oxidase (LOX) is involved in the formation and remodeling of the extracellular matrix, but its role in RA is not yet clear. This study aims to investigate the mechanism of lysyl oxidase (LOX) in synovial hyperplasia and pannus formation associated with rheumatoid arthritis (RA).

View Article and Find Full Text PDF

Rationale: This study reports a rare case of both AA amyloidosis and elderly-onset Still disease presenting as fever following carpal tunnel syndrome surgery.

Patient Concerns: A 79-year-old man reported numbness, pain, and muscle weakness in his right hand for several months.

Diagnoses: We performed carpal tunnel opening surgery and a synovial biopsy because of significant synovial tissue in the carpal tunnel.

View Article and Find Full Text PDF

Shear-stress-induced swirling flow in biological systems.

Biosystems

September 2025

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:

Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.

View Article and Find Full Text PDF

Targeted Blockage of Pathological Extracellular Vesicles and Particles From Fibroblast-Like Synoviocytes for Osteoarthritis Relief: Proteomic Analysis and Cellular Effect.

J Extracell Vesicles

September 2025

Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Osteoarthritis (OA), the prevalent debilitating joint disorder, is accelerated by dysregulated intercellular crosstalk, yet the role of fibroblast-like synoviocyte (FLS)-derived extracellular vesicles and particles (EVPs) in disease progression remains to be elucidated. Here, integrative analysis of clinical specimens, animal models, and publicly available datasets revealed significant alterations in exosomal pathways within OA synovium. Proteomic profiling revealed distinct molecular signatures in EVPs derived from inflammatory and senescent FLSs, reflecting the pathophysiological status of their parent cells.

View Article and Find Full Text PDF

Purpose: To assess the pharmacodynamic effects and therapeutic mechanisms of modified Fuzi decoction (MFZD) in osteoarthritis (OA), particularly OA-related inflammation.

Methods: The main components of MFZD were identified using Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). An OA model was established in Sprague-Dawley rats via intra-articular injection of monoiodoacetate (MIA) to evaluate the anti-OA efficacy of MFZD via gavage.

View Article and Find Full Text PDF