98%
921
2 minutes
20
The eventual exploitation of one-dimensional nanomaterials needs the development of scalable, high yield, homogeneous and environmentally friendly methods capable of meeting the requirements for fabrication of functional nanomaterials with properties on demand. In this article, we demonstrate a vacuum and plasma one-reactor approach for the synthesis of fundamental common elements in solar energy and optoelectronics, i.e. the transparent conducting electrode but in the form of nanotube and nanotree architectures. Although the process is generic and can be used for a variety of TCOs and wide-bandgap semiconductors, we focus herein on indium doped tin oxide (ITO) as the most previously researched in previous applications. This protocol combines widely applied deposition techniques such as thermal evaporation for the formation of organic nanowires serving as 1D and 3D soft templates, deposition of polycrystalline layers by magnetron sputtering, and removal of the templates by simply annealing under mild vacuum conditions. The process variables are tuned to control the stoichiometry, morphology, and alignment of the ITO nanotubes and nanotrees. Four-probe characterization reveals the improved lateral connectivity of the ITO nanotrees and applied on individual nanotubes shows resistivities as low as 3.5 ± 0.9 × 10Ω cm, a value comparable to that of single-crystalline counterparts. The assessment of diffuse reflectance and transmittance in the UV-Vis range confirms the viability of the supported ITO nanotubes as random optical media working as strong scattering layers. Their further ability to form ITO nanotrees opens a path for practical applications as ultra-broadband absorbers in the NIR. The demonstrated low resistivity and optical properties of these ITO nanostructures open a way for their use in LEDs, IR shields, energy harvesting, nanosensors, and photoelectrochemical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374677 | PMC |
http://dx.doi.org/10.1039/d1nr01937f | DOI Listing |
J Phys Chem A
September 2025
Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14850, United States.
Ionic liquids (ILs) have been gaining increasing focus in a variety of applications including emerging electric-propulsion concepts. A quantitative understanding of how IL ions fragment during high-energy collisions with background gases is therefore essential for interpreting mass spectra, predicting ion lifetimes in plasma and vacuum environments, and designing IL-based technologies. This work uses molecular dynamics (MD) simulations with a reactive force field to numerically model the collision-induced dissociation (CID) of isolated ions (both positive and negative) and ion clusters (2:1 and 1:2 clusters) of the prototypical ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF), colliding with a nitrogen (N) molecule, exploring all possible fragmentation channels arising from the breaking of both ionic and covalent bonds at collision energies ranging from 10 electron volts (eV) to 100 electron volts (eV) in the laboratory frame.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
We report on the development of a robust microfluidic nozzle capable of generating replenishing liquid sheet targets with sub-micron thickness at up to kHz repetition rates, a λ/20 surface flatness over areas of at least 100 μm2, and in-vacuum dimensions of 6 × 1.5 mm2. The platform was evaluated for stability under hundreds of 4.
View Article and Find Full Text PDFChaos
September 2025
Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
The absorption of laser energy by plasma is of paramount importance for various applications. Collisional and resonant processes are often invoked for this purpose. However, in some contexts (e.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
HUN-REN Centre for Energy Research, Budapest, Hungary.
A novel medium-current (up to 20 mA), low normalized beam emittance (<1 π mm mrad) electron cyclotron resonance microwave H+ ion source has been developed at the Center for Energy Research in Budapest, Hungary. This high-stability design targets an energy ripple below 1% while delivering a continuous or pulsed proton beam with adjustable pulse duration (0.1-10 ms) and frequency (0.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Kyushu Institute of Technology Graduate School of Life Science and Systems Engineering, Fukuoka 808-0196, Japan.
In ammonia synthesis, a new reaction system that does not use hydrogen (H) as a raw material, such as the plasma/liquid (P/L) reaction, contributes to creating a sustainable chemical industry. The P/L reaction is intended to abstract hydrogen atoms from water molecules to synthesize ammonia under ambient conditions without any catalysts but using electrically activated nitrogen species in the plasma. Therefore, the energy transfer process leading to nitrogen activation is key to the P/L reaction.
View Article and Find Full Text PDF