A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Heteroatom Effects on Quantum Interference in Molecular Junctions: Modulating Antiresonances by Molecular Design. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Controlling charge transport through molecular wires by utilizing quantum interference (QI) is a growing topic in single-molecular electronics. In this article, scanning tunneling microscopy-break junction techniques and density functional theory calculations are employed to investigate the single-molecule conductance properties of four molecules that have been specifically designed to test extended curly arrow rules (ECARs) for predicting QI in molecular junctions. Specifically, for two new isomeric 1-phenylpyrrole derivatives, the conductance pathway between the gold electrodes must pass through a nitrogen atom: this novel feature is designed to maximize the influence of the heteroatom on conductance properties and has not been the subject of prior investigations of QI. It is shown, experimentally and computationally, that the presence of a nitrogen atom in the conductance pathway increases the effect of changing the position of the anchoring group on the phenyl ring from to , in comparison with biphenyl analogues. This effect is explained in terms of destructive QI (DQI) for the -connected pyrrole and shifted DQI for the -connected isomer. These results demonstrate modulation of antiresonances by molecular design and verify the validity of ECARs as a simple "pen-and-paper" method for predicting QI behavior. The principles offer new fundamental insights into structure-property relationships in molecular junctions and can now be exploited in a range of different heterocycles for molecular electronic applications, such as switches based on external gating, or in thermoelectric devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397347PMC
http://dx.doi.org/10.1021/acs.jpcc.1c04242DOI Listing

Publication Analysis

Top Keywords

molecular junctions
12
quantum interference
8
antiresonances molecular
8
molecular design
8
conductance properties
8
conductance pathway
8
nitrogen atom
8
dqi -connected
8
molecular
7
heteroatom effects
4

Similar Publications