A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dealing with missing information on covariates for excess mortality hazard regression models - Making the imputation model compatible with the substantive model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Missing data is a common issue in epidemiological databases. Among the different ways of dealing with missing data, multiple imputation has become more available in common statistical software packages. However, the incompatibility between the imputation and substantive model, which can arise when the associations between variables in the substantive model are not taken into account in the imputation models or when the substantive model is itself nonlinear, can lead to invalid inference. Aiming at analysing population-based cancer survival data, we extended the multiple imputation substantive model compatible-fully conditional specification (SMC-FCS) approach, proposed by Bartlett et al. in 2015 to accommodate excess hazard regression models. The proposed approach was compared with the standard fully conditional specification multiple imputation procedure and with the complete-case analysis using a simulation study. The SMC-FCS approach produced unbiased estimates in both scenarios tested, while the fully conditional specification produced biased estimates and poor empirical coverages probabilities. The SMC-FCS algorithm was then used for handling missing data in the evaluation of socioeconomic inequalities in survival from colorectal cancer patients diagnosed in the North Region of Portugal. The analysis using SMC-FCS showed a clearer trend in higher excess hazards for patients coming from more deprived areas. The proposed algorithm was implemented in R software and is presented as Supplementary Material.

Download full-text PDF

Source
http://dx.doi.org/10.1177/09622802211031615DOI Listing

Publication Analysis

Top Keywords

substantive model
20
missing data
12
multiple imputation
12
conditional specification
12
dealing missing
8
hazard regression
8
regression models
8
imputation substantive
8
smc-fcs approach
8
fully conditional
8

Similar Publications