Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we explore machine learning through a model-agnostic feature representation known as braiding, that employs braid manifolds to interpret multipath ray bundles. We generate training and testing data using the well-known BELLHOP model to simulate shallow water acoustic channels across a wide range of multipath scattering activity. We examine three different machine learning techniques-k-nearest neighbors, random forest tree ensemble, and a fully connected neural network-as well as two machine learning applications. The first application applies known physical parameters and braid information to determine the number of reflections the acoustic signal may undergo through the environment. The second application applies braid path information to determine if a braid is an important representation of the channel (i.e., evolving across bands of higher amplitude activity in the channel). Testing accuracy of the best trained machine learning algorithm in the first application was 86.70% and the testing accuracy of the second application was 99.94%. This work can be potentially beneficial in examining how the reflectors in the environment changeover time while also determining relevant braids for faster channel estimation.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0005819DOI Listing

Publication Analysis

Top Keywords

machine learning
16
multipath scattering
8
braid manifolds
8
application applies
8
second application
8
testing accuracy
8
braid
5
autonomous learning
4
learning interpretation
4
channel
4

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF