Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Telomere length is increasingly used as a biomarker of long-term somatic state and future survival prospects. While most studies have overlooked this aspect, biological interpretations based on a given telomere length will benefit from considering the level of within-individual repeatability of telomere length through time. Therefore, we conducted a meta-analysis on 74 longitudinal studies in nonmammalian vertebrates, with the aim to establish the current pattern of within-individual repeatability in telomere length and to identify the methodological (e.g., qPCR/TRF) and biological factors (e.g., age class, phylogeny) that may affect it. While the median within-individual repeatability of telomere length was moderate to high (R = 0.55; 95% CI: 0.05-0.95; N = 82), marked heterogeneity between studies was evident. Measurement method affected the repeatability estimate strongly, with TRF-based studies exhibiting high repeatability (R = 0.80; 95% CI: 0.34-0.96; N = 25), while repeatability of qPCR-based studies was markedly lower and more variable (R = 0.46; 95% CI: 0.04-0.82; N = 57). While phylogeny explained some variance in repeatability, phylogenetic signal was not significant (λ = 0.32; 95% CI: 0.00-0.83). None of the biological factors investigated here significantly explained variation in the repeatability of telomere length, being potentially obscured by methodological differences. Our meta-analysis highlights the high variability in within-individual repeatability estimates between studies and the need to put more effort into separating technical and biological explanations. This is important to better understand to what extent biological factors can affect the repeatability of telomere length and thus the interpretation of telomere length data.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.16155DOI Listing

Publication Analysis

Top Keywords

telomere length
36
repeatability telomere
24
within-individual repeatability
20
biological factors
12
repeatability
10
telomere
9
length
9
nonmammalian vertebrates
8
studies
6
within-individual
5

Similar Publications

Background: Telomere length (TL) is a valuable marker of aging and stress that reflects both genetic and environmental influences. Quantitative PCR (qPCR) TL measurement is a powerful and cost-effective assay, especially in population studies with limited quantities of source material. Nevertheless, collecting and transporting high-quality blood samples can be logistically challenging, and research suggests that several preanalytical and analytical factors can influence the reliability and precision of the qPCR assay.

View Article and Find Full Text PDF

Effect of henagliflozin on aging biomarkers in patients with type 2 diabetes: A multicenter, randomized, double-blind, placebo-controlled study.

Cell Rep Med

August 2025

Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, Jiangxi 330006, People's Republic of China; Jiangxi Branch of National C

Sodium-glucose cotransporter-2 inhibitors have been proposed as caloric restriction mimetics with potential anti-aging effects. However, clinical data on their influence on aging biomarkers are limited. In this multicenter, randomized, double-blind, placebo-controlled trial, 150 participants with type 2 diabetes are randomized (1:1) to receive oral henagliflozin (10 mg/day) or placebo for 26 weeks.

View Article and Find Full Text PDF

Extremely short telomeres cause bone marrow failure in telomere biology disorder (TBDs) patients. Here, we employed the recently developed 'Telomouse' with human-length telomeres resulting from a single amino acid substitution in the helicase Rtel1 (Rtel1M492K/M492K) to determine the effects of the short telomeres on the bone marrow and hematopoiesis. Under homeostatic conditions, Telomice have notably short telomeres but normal hematopoiesis.

View Article and Find Full Text PDF

Epitalon increases telomere length in human cell lines through telomerase upregulation or ALT activity.

Biogerontology

September 2025

Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.

Epitalon, a naturally occurring tetrapeptide, is known for its anti-aging effects on mammalian cells. This happens through the induction of telomerase enzyme activity, resulting in the extension of telomere length. A strong link exists between telomere length and aging-related diseases.

View Article and Find Full Text PDF

Purpose: There have been conflicting findings on the role of leucocyte telomere length (LTL) in the risk of age-related macular degeneration (AMD). In this study, we evaluated the associations between LTL and the risk of incident AMD and explored whether age, sex and/or genetic predisposition to AMD can modify these associations.

Methods: We conducted a longitudinal cohort study involving 332 123 AMD-free participants with complete baseline covariates and LTL data from the UK Biobank.

View Article and Find Full Text PDF