Recent advances in active targeting of nanomaterials for anticancer drug delivery.

Adv Colloid Interface Sci

Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India. Electronic address:

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the challenges in cancer chemotherapy is the low target to non-target ratio of therapeutic agents which incur severe adverse effect on the healthy tissues. In this regard, nanomaterials have tremendous potential for impacting cancer therapy by altering the toxicity profile of the drug. Some of the striking advantages provided by the nanocarriers mediated targeted drug delivery are relatively high build-up of drug concentration at the tumor site, improved drug content in the formulation and enhanced colloidal stability. Further, nanocarriers with tumor-specific moieties can be targeted to the cancer cell through cell surface receptors, tumor antigens and tumor vasculatures with high affinity and accuracy. Moreover, it overcomes the bottleneck of aimless drug biodistribution, undesired toxicity and heavy dosage of administration. This review discusses the recent developments in active targeting of nanomaterials for anticancer drug delivery through cancer cell surface targeting, organelle specific targeting and tumor microenvironment targeting strategies. Special emphasis has been given towards cancer cell surface and organelle specific targeting as delivery of anticancer drugs through these routes have made paradigm change in cancer management. Further, the current challenges and future prospects of nanocarriers mediated active drug targeting are also demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2021.102509DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
cancer cell
12
cell surface
12
active targeting
8
targeting nanomaterials
8
nanomaterials anticancer
8
drug
8
anticancer drug
8
nanocarriers mediated
8
organelle specific
8

Similar Publications

Autoinjector-based delivery of tranexamic acid provides pharmacokinetic efficacy in a porcine model of uncontrolled hemorrhage.

Injury

August 2025

Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem and the Israel Defense Forces Medical Corps, Jerusalem, Israel; Department of Military Medicine ("Tzameret"), Faculty of Medicine, The Hebrew University of Jerusalem, and the Israel Defense Fo

Background: Hemorrhage remains the principal cause of death on the battlefield. It is suggested that Tranexamic acid (TXA) can improve survival of severely-bleeding casualties. The intravenous approach is not always available in the pre-hospital setting.

View Article and Find Full Text PDF

The development of therapeutic small interfering RNAs (siRNAs) has lately gained significant momentum due to their ability to silence genes in a highly specific manner. The main obstacle withholding the wider translation of siRNA-based drug modalities is their limited half-life and poor bioavailability, especially in extra-hepatic tissues. Consequently, various drug delivery systems (DDSs) have been developed to improve the delivery of siRNAs, including short delivery peptides called cell-penetrating peptides (CPPs).

View Article and Find Full Text PDF

Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.

View Article and Find Full Text PDF

Comparing Round Window Membrane Permeability Enhancers: An Animal Study.

Eur J Pharm Sci

September 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. Electronic address:

Intratympanic (IT) delivery of dexamethasone (DEX) is widely used for treating inner ear disorders; however, its therapeutic efficacy is limited by poor permeability of the round window membrane (RWM). This study aimed to evaluate and compare the efficacy and safety of three pharmacological agents-histamine (HIS), 3% hypertonic saline (3% HS), and sodium caprate (SC)-as adjuvants for enhancing RWM permeability and improving IT-DEX delivery in a murine model. Following IT administration of each permeability enhancer followed by DEX injection, perilymph DEX concentrations were measured using ultra-high-performance liquid chromatography, and DEX receptor expression in the organ of Corti was assessed by immunofluorescence.

View Article and Find Full Text PDF

Increase in breast cancer has led to the search for systems that can enable, targeted, sustained and prolonged release of drugs while simultaneously reducing the side effects posed by them. In light of this, folic acid-conjugated 5-Fluorouracil and doxorubicin loaded chitosan/Fe₃O₄ (FA-dual@CS/Fe₃O₄) nanocomposite has been synthesized using the chemical method for targeted breast cancer therapy in addition to CS/FeO and dual drug encapsulated CS/FeO. FTIR and XPS studies confirm the successful drug encapsulation and FA conjugation.

View Article and Find Full Text PDF