Feasibility Study of a Time-of-Flight Brain Positron Emission Tomography Employing Individual Channel Readout Electronics.

Sensors (Basel)

Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107, Korea.

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study was to investigate the feasibility of a time-of-flight (TOF) brain positron emission tomography (PET) providing high-quality images. It consisted of 30 detector blocks arranged in a ring with a diameter of 257 mm and an axial field of view of 52.2 mm. Each detector block was composed of two detector modules and two application-specific integrated circuit (ASIC) chips. The detector module was composed of an 8 × 8 array of 3 × 3 mm multi-pixel photon counters and an 8 × 8 array of 3.11 × 3.11 × 15 mm lutetium yttrium oxyorthosilicate scintillators. The 64-channel individual readout ASIC was used to acquire the position, energy, and time information of a detected gamma ray. A coincidence timing resolution of 187 ps full width at half maximum (FWHM) was achieved using a pair of channels of two detector modules. The energy resolution and spatial resolution were 6.6 ± 0.6% FWHM (without energy nonlinearity correction) and 2.5 mm FWHM, respectively. The results of this study demonstrate that the developed TOF brain PET could provide excellent performance, allowing for a reduction in radiation dose or scanning time for brain imaging due to improved sensitivity and signal-to-noise ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402256PMC
http://dx.doi.org/10.3390/s21165566DOI Listing

Publication Analysis

Top Keywords

brain positron
8
positron emission
8
emission tomography
8
tof brain
8
detector modules
8
detector
5
feasibility study
4
study time-of-flight
4
brain
4
time-of-flight brain
4

Similar Publications

PET radiotracer targeting the complement C3a receptor.

Nucl Med Biol

September 2025

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA. Electronic address:

Background: Positron-emission tomography (PET) imaging of the complement system could advance understanding of the innate immune system in central nervous system (CNS) diseases and development of new drugs. The goal of this study was to develop a PET radiotracer targeting the C3a receptor (C3aR) of the complement system.

Methods: C3aR radiotracer [F]1 was synthesized in one step.

View Article and Find Full Text PDF

Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.

Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).

View Article and Find Full Text PDF

FDG PET Findings in Rare Brain Sodium Channelopathy Associated with SCN2A Gene Mutation.

Clin Nucl Med

September 2025

Department of Nuclear Medicine & PET/CT, Mahajan Imaging & Labs.

SCN2A gene mutations, which affect the function of the voltage-gated sodium channel NaV1.2, are associated with a spectrum of neurological disorders, including epileptic encephalopathies and autism spectrum disorders. Advanced imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been instrumental in elucidating the neuroanatomic and functional alterations associated with these mutations.

View Article and Find Full Text PDF

Statistical parametric mapping: a catalyst for cognitive neuroscience.

Cereb Cortex

August 2025

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH  Zurich, Zurich, Switzerland.

Statistical Parametric Mapping (SPM) is a statistical framework and open source software package for neuroimaging data analysis. Originally created by Karl Friston in the early 1990s, it has been used by a vast number of scientific studies over the last three decades. SPM has not only revolutionized the analysis of neuroimaging data but also catalyzed the development of cognitive neuroscience.

View Article and Find Full Text PDF

Introduction: We developed and validated age-related amyloid beta (Aβ) positron emission tomography (PET) trajectories using a statistical model in cognitively unimpaired (CU) individuals.

Methods: We analyzed 849 CU Korean and 521 CU non-Hispanic White (NHW) participants after propensity score matching. Aβ PET trajectories were modeled using the generalized additive model for location, scale, and shape (GAMLSS) based on baseline data and validated with longitudinal data.

View Article and Find Full Text PDF