A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tribological Properties of Micropored Poly(2-hydroxyethyl methacrylate) Hydrogels in a Biomimetic Aqueous Environment. | LitMetric

Tribological Properties of Micropored Poly(2-hydroxyethyl methacrylate) Hydrogels in a Biomimetic Aqueous Environment.

ACS Appl Mater Interfaces

Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, New Jersey 07030, United States.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The applications of hydrogels in tissue engineering as implants have rapidly grown in the last decade. However, the tribological properties of hydrogels under physiologically relevant conditions, especially those of textured hydrogels, have remained largely unknown due to the complexity of their mechanical and chemical properties. In this study, we experimentally investigated the tribological properties of micopored poly(2-hydroxyethyl methacrylate) (pHEMA) with the lateral pore dimensions varied compared to untextured pHEMA, the most commonly used hydrogel in ophthalmology, under physiologically relevant conditions. The pHEMA specimens were slid against a smooth glass curve under varying loads (6-60 mN, leading to an average contact pressure of 10-21 kPa) and sliding speeds (1-10 mm/s) in phosphate-buffered saline (pH 7.4) at 33 °C to mimic the physiological conditions in human eyes. At relatively low loads and sliding speeds (e.g., 6 mN and 1 mm/s), the micopored pHEMA did not reduce the dissipated frictional energy significantly. However, at relatively high loads and sliding speeds (e.g., 60 mN and 100 mm/s), the micopored pHEMA resulted in significantly lower frictional energy (reduced by up to 68%) dissipation than the untextured pHEMA. The effect was more pronounced with the micropores with smaller dimensions. These are attributed to the greater amount and retentivity of the interfacial fluid supported by the free water squeezed out of the micropores with the smaller dimensions under the higher load and sliding speed. These results suggest that the use of micropore texturing on hydrogels in practice, such as for ocular applications, can be leveraged to reduce friction and wear under physiological conditions and hence lower the chance of inflammation near eye implants or keratoprosthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c13718DOI Listing

Publication Analysis

Top Keywords

tribological properties
12
sliding speeds
12
poly2-hydroxyethyl methacrylate
8
physiologically relevant
8
relevant conditions
8
untextured phema
8
physiological conditions
8
loads sliding
8
mm/s micopored
8
micopored phema
8

Similar Publications