Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
electron microscopy is an effective tool for understanding the mechanisms driving novel phenomena in 2D structures. However, due to practical challenges, it is difficult to address these technologically relevant 2D heterostructures with electron microscopy. Here, we use the differential phase contrast (DPC) imaging technique to build a methodology for probing local electrostatic fields during electrical operation with nanoscale spatial resolution in such materials. We find that, by combining a traditional DPC setup with a high-pass filter, we can largely eliminate electric fluctuations emanating from short-range atomic potentials. Using a method based on this filtering algorithm, electric field expectations can be directly compared with experimentally derived values to readily identify inhomogeneities and potentially problematic regions. We use this platform to analyze the electric field and charge density distribution across layers of hBN and MoS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416602 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.1c01636 | DOI Listing |