98%
921
2 minutes
20
Leptin (LEP) and leptin receptor (LEPR) play a major role in energy homeostasis, metabolism, and reproductive function. While effects of biallelic likely pathogenic variants (-/-) on the phenotype are well characterized, effects of mono-allelic likely pathogenic variants (wt/-) in the LEP and LEPR gene on the phenotype compared to wild-type homozygosity (wt/wt) have not been systematically investigated. We identified in our systematic review 44 animal studies (15 on Lep, 29 on Lepr) and 39 studies in humans reporting on 130 mono-allelic likely pathogenic variant carriers with 20 distinct LEP variants and 108 heterozygous mono-allelic likely pathogenic variant carriers with 35 distinct LEPR variants. We found indications for a higher weight status in carriers of mono-allelic likely pathogenic variant in the leptin and in the leptin receptor gene compared to wt/wt, in both animal and human studies. In addition, animal studies showed higher body fat percentage in Lep and Lepr wt/- vs wt/wt. Animal studies provided indications for lower leptin levels in Lep wt/- vs. wt/wt and indications for higher leptin levels in Lepr wt/- vs wt/wt. Data on leptin levels in human studies was limited. Evidence for an impaired metabolism in mono-allelic likely pathogenic variants of the leptin and in leptin receptor gene was not conclusive (animal and human studies). Mono-allelic likely pathogenic variants in the leptin and in leptin receptor gene have phenotypic effects disposing to increased body weight and fat accumulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390564 | PMC |
http://dx.doi.org/10.1186/s40348-021-00119-7 | DOI Listing |
Developmental delay and seizures with or without movement abnormalities (OMIM 617836) caused by heterozygous pathogenic variants in the gene (DHDDS-CDG) is a rare genetic disease that belongs to the progressive encephalopathy spectrum. It results in developmental delay in affected children, accompanied by myoclonus, seizures, ataxia and tremor, which worsens over time. encodes a subunit of a DHDDS/NUS1 cis-prenyltransferase ( PTase), a branch point enzyme of the mevalonate pathway essential for N-linked glycosylation.
View Article and Find Full Text PDFBrain
August 2025
Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an incurable microvascular disease caused by C-terminus truncation of the TREX1 exonuclease. There is a pressing need to understand disease mechanisms and identify therapeutic targets. We evaluated TREX1 sequencing data from 469 229 UK Biobank participants together with RVCL-S-related microvascular clinical and imaging outcomes.
View Article and Find Full Text PDFNat Microbiol
June 2025
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
Plasmodium falciparum evades antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. Previous work with clonal P. falciparum populations revealed var gene expression profiles inconsistent with uniform single var gene expression.
View Article and Find Full Text PDFCancer Cell Int
April 2025
Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974, Iran.
Background And Aim: Hereditary cancer syndromes account for 6-10% of all colorectal cancer (CRC) cases and 20% of early-onset CRC. Identifying novel pathogenic germline variants can impact genetic testing, counseling, and surveillance. This study aimed to determine the prevalence of germline variants associated with hereditary CRC in the Iranian population.
View Article and Find Full Text PDFHum Genet
January 2025
Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Neuron navigators (NAVs) are cytoskeleton-associated proteins well known for their role in axonal guidance, neuronal migration, and neurite growth necessary for neurodevelopment. Neuron navigator 3 (NAV3) is one of the three NAV proteins highly expressed in the embryonic and adult brain. However, the role of the NAV3 gene in human disease is not well-studied.
View Article and Find Full Text PDF