Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
(1) Background: Deferoxamine B (DFO) is the most widely used chelator for labeling of zirconium-89 (Zr) to monoclonal antibody (mAb). Despite the remarkable developments of the clinical Zr-immuno-PET, chemical species and stability constants of the Zr-DFO complexes remain controversial. The aim of this study was to re-evaluate their stability constants by identifying species of Zr-DFO complexes and demonstrate that the stability constants can estimate radiochemical yield (RCY) and chelator-to-antibody ratio (CAR). (2) Methods: Zr-DFO species were determined by UV and ESI-MS spectroscopy. Stability constants and speciation of the Zr-DFO complex were redetermined by potentiometric titration. Complexation inhibition of Zr-DFO by residual impurities was investigated by competition titration. (3) Results: Unknown species, ZrHDFO, were successfully detected by nano-ESI-Q-MS analysis. We revealed that a dominant specie under radiolabeling condition (pH 7) was ZrHDFO, and its stability constant (logβ) was 49.1 ± 0.3. Competition titration revealed that residual oxalate inhibits Zr-DFO complex formation. RCYs in different oxalate concentration (0.1 and 0.04 mol/L) were estimated to be 86% and >99%, which was in good agreement with reported results (87%, 97%). (4) Conclusion: This study succeeded in obtaining accurate stability constants of Zr-DFO complexes and estimating RCY and CAR from accurate stability constants established in this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401698 | PMC |
http://dx.doi.org/10.3390/molecules26164977 | DOI Listing |