Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetic retinopathy (DR) is one of the most frequent causes of irreversible blindness, thus prevention and early detection of DR is crucial. The purpose of this study is to identify genetic determinants of DR in individuals with type 2 diabetic mellitus (T2DM). A total of 551 T2DM patients (254 with DR, 297 without DR) were included in this cross-sectional research. Thirteen T2DM-related single nucleotide polymorphisms (SNPs) were utilized for constructing genetic risk prediction model. With logistic regression analysis, genetic variations of the (rs8050136) and (rs831571) polymorphisms were independently associated with a higher risk of DR. The area under the curve (AUC) calculated on known nongenetic risk variables was 0.704. Based on the five SNPs with the highest odds ratio (OR), the combined nongenetic and genetic prediction model improved the AUC to 0.722. The discriminative accuracy of our 5-SNP combined risk prediction model increased in patients who had more severe microalbuminuria (AUC = 0.731) or poor glycemic control (AUC = 0.746). In conclusion, we found a novel association for increased risk of DR at two T2DM-associated genetic loci, (rs8050136) and (rs831571). Our predictive risk model presents new insights in DR development, which may assist in enabling timely intervention in reducing blindness in diabetic patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398882PMC
http://dx.doi.org/10.3390/jpm11080689DOI Listing

Publication Analysis

Top Keywords

prediction model
12
single nucleotide
8
diabetic retinopathy
8
risk prediction
8
rs8050136 rs831571
8
risk
7
genetic
5
multiple single
4
nucleotide polymorphism
4
polymorphism testing
4

Similar Publications

Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.

View Article and Find Full Text PDF

Achermann, BB, Drewek, A, and Lorenzetti, SR. Acute effect of the bounce squat on ground reaction force at the turning point and barbell kinematics. J Strength Cond Res XX(X): 000-000, 2025-The free-weight back squat is a key exercise for developing lower-body strength, with variations that influence muscle activation and performance.

View Article and Find Full Text PDF

Wrist biomechanics remain incompletely understood due to the complexity of experimental measurements in this multi-bone joint system. Finite element analysis provides a powerful alternative for investigating internal variables such as carpal kinematics and displacement patterns. This technical brief compares two bone representation approaches, all-cortical versus cortical-trabecular, using two distinct finite element models developed from the same wrist CT dataset.

View Article and Find Full Text PDF

In cardiovascular research, melatonin has shown promise in exhibiting antifibrotic properties and modulating endoplasmic reticulum (ER) stress. However, the exact mechanism by which it influences myocardial fibrosis has not been fully clarified. Therefore, this research aimed to investigate the inhibitory effect of melatonin on the progression of myocardial fibrosis through a mechanism involving the BIP/PERK/CHOP signaling pathway, both in silico and in vivo experimental models.

View Article and Find Full Text PDF

Cardiovascular Risk Prediction in Older Adults.

Curr Atheroscler Rep

September 2025

Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 521 19th Street South-GSB 444, Birmingham, AL, 35233, USA.

Purpose Of Review: This review examines cardiovascular disease (CVD) risk prediction models relevant to older adults, a rapidly expanding population with elevated CVD risk. It discusses model characteristics, performance metrics, and clinical implications.

Recent Findings: Some models have been developed specifically for older adults, while several others consider a broader age range, including some older individuals.

View Article and Find Full Text PDF