98%
921
2 minutes
20
Muscle atrophy arises from a multiplicity of physio-pathological situations and has very detrimental consequences for the whole body. Although knowledge of muscle atrophy mechanisms keeps growing, there is still no proven treatment to date. This study aimed at identifying new drivers for muscle atrophy resistance. We selected an innovative approach that compares muscle transcriptome between an original model of natural resistance to muscle atrophy, the hibernating brown bear, and a classical model of induced atrophy, the unloaded mouse. Using RNA sequencing, we identified 4415 differentially expressed genes, including 1746 up- and 2369 down-regulated genes, in bear muscles between the active versus hibernating period. We focused on the Transforming Growth Factor (TGF)-β and the Bone Morphogenetic Protein (BMP) pathways, respectively, involved in muscle mass loss and maintenance. TGF-β- and BMP-related genes were overall down- and up-regulated in the non-atrophied muscles of the hibernating bear, respectively, and the opposite occurred for the atrophied muscles of the unloaded mouse. This was further substantiated at the protein level. Our data suggest TGF-β/BMP balance is crucial for muscle mass maintenance during long-term physical inactivity in the hibernating bear. Thus, concurrent activation of the BMP pathway may potentiate TGF-β inhibiting therapies already targeted to prevent muscle atrophy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393865 | PMC |
http://dx.doi.org/10.3390/cells10081873 | DOI Listing |
World Neurosurg
September 2025
Swedish Neuroscience Institute, Seattle, WA; Seattle Science Foundation, Seattle, WA.
Introduction: Lateral Lumbar Interbody Fusion (LLIF) is based on a less-invasive access corridor through the retroperitoneum and psoas muscle, though concerns persist over postoperative weakness and neuropathy on the surgical side. This study investigates if the trans-psoas LLIF approach is associated with long-term changes in psoas morphology, hip flexor (HF) weakness, and lower extremity dysesthesia.
Methods: The authors retrospectively reviewed all LLIF cases at a single institution from January 2016 to June 2024.
Neuromuscul Disord
August 2025
Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
Spinal muscular atrophy (SMA) types 2 and 3 are chronic neuromuscular disorders characterized by progressive motor impairment. Although disease-modifying therapies such as risdiplam and nusinersen have shown clinical efficacy, real-world data in pediatric populations remain limited. This prospective observational study evaluated motor function outcomes in 20 children with SMA (aged 3 to 13 years; 12 with type 2, 8 with type 3) receiving either risdiplam or nusinersen in Northwestern Iran.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, China.
Peripheral nerve injury (PNI) is notoriously difficult to repair due to impaired axonal regeneration and dysregulated inflammatory microenvironments. This study demonstrates that crocin facilitates peripheral nerve regeneration by modulating the STAT3/Bcl-2/Beclin-1 signaling axis, enhancing autophagy while suppressing NLRP3 inflammasome-mediated pyroptosis. In a rat model of sciatic nerve crush injury, crocin treatment improved axonal regrowth and ultrastructural remyelination, as evidenced by upregulated expression of β3-Tubulin, neurofilament-200 (NF200), and myelin basic protein (MBP), alongside significantly elevated sciatic functional index (SFI) scores, reduced muscle atrophy, and diminished collagen deposition.
View Article and Find Full Text PDFJ Med Ultrason (2001)
September 2025
Department of Emergency Medicine, Faculty of Medicine, Kindai University, Osaka, Japan.
Purpose: This study aimed to investigate muscle atrophy in critically ill patients using ultrasonography. We compared the rectus femoris (a major muscle of the lower limbs) with the sternocleidomastoid (an accessory respiratory muscle).
Methods: Thirty-four patients hospitalized at the Critical Care Medical Center of Kindai University Hospital between January 2022 and March 2023 were enrolled.
J Neurochem
September 2025
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
Patients with Duchenne muscular dystrophy (DMD) may experience neurobehavioral and cognitive concerns, including psychiatric symptoms, due to the absence of full-length dystrophin (Dp427), frequently accompanied by deficiencies in shorter isoforms. The lack of dystrophin affects neurophysiological processes from the uterine phase, impacting neural circuitry in brain regions such as the prefrontal cortex, hippocampus, and cerebellum. This leads to reduced inhibitory GABAergic transmission and altered hippocampal glutamatergic signaling.
View Article and Find Full Text PDF