Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Aspartic proteases use a pair of carboxylic acids to activate water molecules for nucleophilic attack. Here we report a nanoparticle catalyst with a similar catalytic motif capable of generating a hydroxide ion in its active site even under acidic reaction conditions. The synthetic enzyme accelerated the hydrolysis of -nitrophenyl acetate (PNPA) by 91,000 times and could also hydrolyze nonactivated aryl esters at pH 7. The distance between the two acids and, in particular, the flexibility of the catalytic groups in the active site controlled the catalytic efficiency. The synthetic enzyme readily detected the addition of a single methyl on the acyl group of the substrate, as well as the substitution pattern on the phenyl ring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378761 | PMC |
http://dx.doi.org/10.1021/acscatal.1c00371 | DOI Listing |