Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pre-harvest sprouting (PHS) is one of the primary problems associated with seed dormancy in rice ( L.). It causes yield loss and reduces grain quality under unpredictable humid conditions at the ripening stage, thus affecting the economic value of the rice crop. To resolve this issue, understanding the molecular mechanism underlying seed dormancy in rice is important. Recent studies have shown that seed dormancy is affected by a large number of genes associated with plant hormone regulation. However, understanding regarding the effect of heat stress on seed dormancy and plant hormones is limited. This study compared the transcriptome and small RNAome of the seed embryo and endosperm of two contrasting rice accessions, PHS susceptible (with low seed dormancy) and PHS resistant (with high seed dormancy), at three different maturation stages. We found that 9,068 genes and 35 microRNAs (miRNAs) were differentially expressed in the embryo, whereas 360 genes were differentially expressed in the endosperm. Furthermore, we identified and verified the candidate genes associated with seed dormancy and heat stress-related responses in rice using quantitative real-time PCR. We newly discovered eight hormone-related genes, four heat shock protein-related genes, and two miRNAs potentially involved in PHS. These findings provide a strong foundation for understanding the dynamics of transcriptome and small RNAome of hormone- and heat stress-related genes, which affect PHS during seed maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377729PMC
http://dx.doi.org/10.3389/fpls.2021.727302DOI Listing

Publication Analysis

Top Keywords

seed dormancy
28
transcriptome small
12
small rnaome
12
seed
9
genes micrornas
8
pre-harvest sprouting
8
associated seed
8
dormancy rice
8
genes associated
8
differentially expressed
8

Similar Publications

Decentralized wastewater management using treatment wetlands: Effective removal of antibiotics, resistance genes and organic micropollutants.

Sci Total Environ

September 2025

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.

Treatment wetlands (TW) are a popular choice for decentralized wastewater treatment, with substantial documentation on their capacity to manage conventionally monitored pollutants. However, most insights into their effectiveness against emerging contaminants come from lab and mesocosm studies with a limited number of compounds, highlighting knowledge gaps in their performance at full scale. This study provides a first long-term, full-scale assessment of TW ability to remove a large number of organic micropollutants (OMPs) and manage antibiotic resistance under real-world conditions.

View Article and Find Full Text PDF

Seed coat-derived ABA regulates seed dormancy of by modulating ABA and GA balance.

Front Plant Sci

September 2025

College of Life Sciences, Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China of Ministry of Education, Shaanxi Normal University, Xi'an, China.

Plant seeds have evolved diverse dormancy types and regulatory mechanisms to adapt to environmental conditions and seasonal changes. As a commonly used rootstock for cultivated pears, faces challenges in seedling production and large-scale cultivation due to limited understanding of seed dormancy mechanisms. In this study, we report that seeds exhibit non-deep physiological dormancy, with seed coats playing a pivotal regulatory role.

View Article and Find Full Text PDF

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.

View Article and Find Full Text PDF

Influence of Plant Species and De-Icing Salt on Microbial Communities in Bioretention.

Environ Microbiol Rep

October 2025

École d'urbanisme et d'architecture de paysage, Faculté de l'aménagement, Université de Montréal, Montréal, Québec, Canada.

Bioretention (BR) systems are green infrastructures used to manage runoff even in cold climates. Bacteria and fungi play a role in BR's performance. This mesocosm study investigated the influence of plant species and de-icing salt on the diversity, the community composition, and the differential abundance of bacteria and fungi in BR.

View Article and Find Full Text PDF