Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genetic changes underlying adaptation vary greatly in terms of complexity and, within the same species, genetic responses to similar selective pressures may or may not be the same. We examine both complex (supergene) and simple (SNP) genetic variants occurring in populations of rainbow trout (Oncorhynchus mykiss) independently isolated from ocean access and compared them to each other and to an anadromous below-barrier population representing their ancestral source to search for signatures of both parallel and nonparallel adaptation. All landlocked populations displayed an increased frequency of a large inversion on chromosome Omy05, while 3 of the 4 populations exhibited elevated frequencies of another inversion located on chromosome Omy20. In addition, we identified numerous regions outside these 2 inversions that also show significant shifts in allele frequencies consistent with adaptive evolution. However, there was little concordance among above-barrier populations in these specific genomic regions under selection. In part, the lack of concordance appears to arise from ancestral autopolyploidy in rainbow trout that provides duplicate genomic regions of similar functional composition for selection to act upon. Thus, while selection acting on landlocked populations universally favors the resident ecotype, outside of the major chromosomal inversions, the resulting genetic changes are largely distinct among populations. Our results indicate that selection on standing genetic variation is likely the primary mode of rapid adaptation, and that both supergene complexes and individual loci contribute to adaptive evolution, further highlighting the diversity of adaptive genomic variation involved in complex phenotypic evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esab049DOI Listing

Publication Analysis

Top Keywords

genetic changes
8
rainbow trout
8
landlocked populations
8
adaptive evolution
8
genomic regions
8
populations
6
genetic
5
polygenic basis
4
basis role
4
role genome
4

Similar Publications

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Stress Biol

September 2025

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.

View Article and Find Full Text PDF

Introduction: Knockout of the Fmo5 gene in mice led to a lean, slow-ageing phenotype characterised by the presence of 2,3-butanediol isomers in their urine and plasma. Oral treatment of wildtype mice with 2,3-butanediol led to a low cholesterol, low epididymal fat phenotype.

Objectives: Determine if significant, heterozygous coding variations in human FMO5 would give rise to similar clinical and metabolic phenotypes in humans, as in C57BL/6J mice with knockout of the Fmo5 gene and in particular, increased excretion of 2,3-butanediol.

View Article and Find Full Text PDF