98%
921
2 minutes
20
Integrated carbon capture and conversion of CO into materials (IC M) is an attractive solution to meet global energy demand, reduce our dependence on fossil fuels, and lower CO emissions. Herein, using a water-lean post-combustion capture solvent, [N-(2-ethoxyethyl)-3-morpholinopropan-1-amine] (2-EEMPA), >90 % conversion of captured CO to hydrocarbons, mostly methane, is achieved in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and <15 bar H pressure). The catalytic performance was better in 2-EEMPA than in aqueous 5 m monoethanol amine (MEA). Operando nuclear magnetic resonance (NMR) study showed in situ formation of N-formamide intermediate, which underwent further hydrogenation to form methane and other higher hydrocarbons. Technoeconomic analyses (TEA) showed that the proposed integrated process can potentially improve the thermal efficiency by 5 % and reduce the total capital investment and minimum synthetic natural gas (SNG) selling price by 32 % and 12 %, respectively, compared to the conventional Sabatier process, highlighting the energetic and economic benefits of integrated capture and conversion. Methane derived from CO and renewable H sources is an attractive fuel, and it has great potential as a renewable hydrogen carrier as an environmentally responsible carbon capture and utilization approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202101590 | DOI Listing |
FEBS J
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, USA.
Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.
View Article and Find Full Text PDFSmall Methods
September 2025
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
Scalp electroencephalography (EEG) serves as a pivotal technology for the noninvasive monitoring of brain functional activity, diagnosing neurological disorders, and assessing cognitive states. However, inherent compatibility barriers between traditional rigid electrodes and the hairy scalp interface significantly compromise signal quality, long-term monitoring comfort, and user compliance. This review examines conductive hydrogel electrodes' pivotal role in advancing scalp EEG, particularly their unique capacity to overcome hair-interface barriers.
View Article and Find Full Text PDFChaos
September 2025
Institut für Theoretische Physik II - Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
We investigate the impact of intermittent energy injections on a Brownian particle, modeled as stochastic renewals of its kinetic energy to a fixed value. Between renewals, the particle follows standard underdamped Langevin dynamics. For energy renewals occurring at a constant rate, we find non-Boltzmannian energy distributions that undergo a shape transition driven by the competition between the velocity relaxation timescale and the renewal timescale.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
September 2025
Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY, USA.
Emission factor data for existing heating appliances are being used to estimate achievable emission reductions with emerging heating technologies. However, the emission factors currently being used for modeling were developed prior to low-sulfur fuel standards and rely on a small number of studies, mostly focusing on steady-state operation. In this work, detailed emission measurements of typical heating equipment fired with natural gas and No.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
Owing to their unique combination of magnetic and optical properties, luminescent polychlorinated radicals are promising candidates for advanced applications in both optoelectronics and quantum technologies. In this study, we employ the lineshape formalism within a computational protocol based on time-dependent density functional theory (TD-DFT) to investigate the excited-state properties of six representative members of this family presenting different sizes and excited-state characters. We explore a wide range of density functionals, applying or not the Tamm-Dancoff approximation (TDA), combined with different vibronic models, namely, the vertical gradient (VG), vertical Hessian (VH), and adiabatic Hessian (AH), as well as dipole moment expansions using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations.
View Article and Find Full Text PDF