A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Insight into the thiourea-induced drought tolerance in two chickpea varieties: Regulation of osmoprotection, reactive oxygen species metabolism and glyoxalase system. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The sulfhydryl bioregulator thiourea (TU) is effective in ameliorating the negative impact of different abiotic stresses in plants. To explore the significant performance of TU (5 mM TU, as foliar spray) in conferring mild (25% depletion of water from field capacity, FC), moderate (50% depletion from FC) and severe (75% depletion from FC) drought stress (applied at 25 days after sowing), physiological and biochemical responses of two chickpea (Cicer arietinum L.) cultivars (cv. BARI Chola-7 and BARI Chola-9) were investigated in the current study. Shoot fresh weight, dry weight, chlorophyll content and leaf relative water content reduced noticeably in mild, moderate and severe drought stresses over control. A sharp increase of HO accumulation, thiobarbituric acid reactive substances and proline content were noticed at any level of drought stress which further declined in TU-treated drought-stressed plants. Thiourea-foliar application also increased ascorbate and glutathione contents and upregulated antioxidant enzyme activities, compared to drought-stressed plants alone. Thiourea-induced increased glyoxalase I and glyoxalase II activities are the indications of upregulated methylglyoxal detoxification system. Enhancement of antioxidant defense and glyoxalase system, osmoregulation and protection of photosynthetic pigments by TU improved growth, imparted oxidative stress tolerance, ameliorated ROS toxicity and improved physiology of chickpea plants under drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.08.020DOI Listing

Publication Analysis

Top Keywords

drought stress
12
glyoxalase system
8
drought-stressed plants
8
drought
5
insight thiourea-induced
4
thiourea-induced drought
4
drought tolerance
4
tolerance chickpea
4
chickpea varieties
4
varieties regulation
4

Similar Publications